Math, asked by sutapanahak8804, 10 months ago

Find the real root of the equation x3-5x+3=0 by newton raphsons method to three places of decimal

Answers

Answered by hemantsuts012
0

Answer:

Concept:

According to the Newton- Raphson method:

x_{n + 1} =  x_{n} -   \frac{f(x_{n})}{f' x_{n}}

where xn is starting guess.

Find:

We have to Find the real root of the equation x³-5x+3=0

Given:

{x}^{3}  - 5x + 3  = 0

Step-by-step explanation:

let

f(x) =  {x}^{3 }  - 5x + 3

f'(x) = 3 {x}^{2}  - 5

f(1) =  {1}^{3}  - 5(1) + 3

f(1) =  - 2

f(2) =  {2}^{3}  - 5(2) + 3

f(x) = 8 - 10  +  3

f(2) = 1

We assume

x_{0} =  - 2

Hence root of given function is

x_{n + 1} =  x_{n} -   \frac{f(x_{n})}{f' x_{n}}

x_{1} =  x_{0} -   \frac{f(x_{0})}{f' x_{0}}

x_{1} =  x_{0} -   \frac{f( { x_{0}}^{3} - 5 x_{0}  + 3 )}{f' 3 { x_{0} }^{2}  - 5}

x_{1} = - 2 -  \frac{5}{7}

x_{n + 1} =  - 2.714

The real root is -2.714

#SPJ3

Answered by tanvigupta426
0

Answer:

The real root of the equation x^{3}-5 x+3=0 \\ by newton Raphson's method to three places of decimal is x_{I I I}=1.834.

Step-by-step explanation:

To find the real root of the equation x3-5x+3=0 by the newton Raphson's method to three places of decimal.

The real root of the equation

x^{3}-5 x+3=0 \\

Step 1

Let,

f(x)=x^{3}-5 x+3 \\

f^{\prime}(x)=3 x^{2}-5 \\

By newton Raphson's method

x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\end{gathered}$$

$x_{0}=-2$

Step 2

step    $x_{0}$                      & $f\left(x_{0}\right)$                 & $x_{1}$ &                $f\left(x_{1}\right)$ \\

1         & $-2.0000$                   5                $-2.7143$          & $-3.4257$ \\

2        & $-2.7143$              & $-3.4257$            & $-2.5140$ &          $-0.3187$ \\

3        & $-2.5140$              & $-0.3187$             & $-2.4912$          & $-0.0039$ \\

4        & $-2.4912$              & $-0.0039$             & $-2.4909$           & $0.0000$ \\

5        & $-2.4909$              & $-0.0000$             & $-2.4909$           & $0.0000$ \\

The first approximation,

x_{I}=-2.491

x_{0}=1

Step 3

step       $x_{0}$                   & $f\left(x_{0}\right)$               & $x_{1}$ &                $f\left(x_{1}\right)$ \\

1            & $1.0000$             & $-1.0000$         & $0.5000$            & $0.6250$ \\

2            $ & $0.5000$            & $0.6250$           & $0.6471$            & $0.0356$ \\

3$            & $0.6471$             & $0.0356$          & $0.6566$            & $0.0002$ \\

4            & $0.6566$             & $0.0002$           & $0.6566$           & $0.0002$ \\

The second approximation,

x_{I I}=0.657

x_{0}=2

Step 4

step        $x_{0}$                   & $f\left(x_{0}\right)$               & $x_{1}$ &                 $f\left(x_{1}\right)$ \\

1             & $2.0000$            & $1.0000$            & $1.8571$            & $0.1195$ \\

2            & $1.8571$             & $0.1195$            & $1.8348$            & $0.0028$ \\

3            & $1.8348$            & $0.0028$             & $1.8342$            & $0.0000$ \\

4            & $1.8342$             & $0.0000$            & $1.8342$           & $0.0000$ \\

The third approximation,

x_{I I I}=1.834

Therefore, the correct answer is, x_{I I I}=1.834

#SPJ3

Similar questions