Math, asked by Padmavenila, 8 months ago

Find the reaminder when y3-y2-2y+5 is divided by y-4​

Answers

Answered by ItzAditt007
7

AnswEr:-

Your Answer Is 45.

ExplanaTion:-

Given polynomial:-

 \\ \tt\longrightarrow {y}^{3}  -  {y}^{2}  - 2y + 5. \\

And we have to divide it by x-4.

To Find:-

  • The Remainder.

So Now,

Here we can find out Remainder by two methods:-

1) Long Division Method.

2) Remainder Theorem.

By Long Division Method:-

\boxed{\begin{array}\quad\begin{tabular}{m{3.5em}cccc}&& y^2&  + 3y&+10\\\cline{3-6}\multicolumn{2}{l}{y -  4\big)}& y^3& - y^2&  - 2y &  + 5\\&&  - y^3& - 4y^2&&\\&&(-)& (+)  &&\\ \cline{3-6}&&&  3y^2&  - 2y&  + 5\\&&&3y^2& - 12y &\\ &&& (-) &(+)&\\ \cline{4-6}&&&& 10y&  + 5\\&&&&10y& - 40\\ &&&&(-)& (+)\\ \cline{4 - 6}&&&&&45 = remainder. \\\cline{4 - 6} \\\end{tabular}\end{array}}

Therefore the Remainder is 45.

By Remainder Theorem:-

By Remainder Theorem we get,

 \\ \tt\mapsto y - 4 = 0. \\  \\ \tt\mapsto y = 4. \\

By putting the value of y in the polynomial we get:-

 \\ \tt\mapsto {y}^{3}  -  {y}^{2} - 2y + 5. \\  \\  \tt = (4) {}^{3}  -  {(4)}^{2}  - 2(4) + 5. \\  \\ \tt = 64 - 16 - 8 + 5. \\  \\ \tt = 64 - 24 + 5. \\  \\ \tt = 40 + 5. \\  \\ \tt = 45 =  \rm remainder. \\

Therefore the Remainder is 45.

Answered by Anonymous
22

{ \huge{ \bold{ \underline{ \underline{ \blue{Question:-}}}}}}

Find the reminder when y³-y²-2y+5 is divided by y-4 ..

_______________

{ \huge{ \bold{ \underline{ \underline{ \pink{Answer:-}}}}}}

Refer to Attachment

Verification : -

\dashrightarrow\sf{y-4}

\dashrightarrow\sf{y=4}

Substituting Values : -

\dashrightarrow\sf{{(4)}^{3}-{(4)}^{2}-2(4)+5}

\dashrightarrow\sf{64-16-8+5}

\dashrightarrow\sf{64-24+5}

\leadsto\sf{{ \large{ \boxed{ \bold{ \bold{ \red{45}}}}}}}

HENCE VERIFIED

Attachments:
Similar questions