Physics, asked by sf259107, 6 months ago

find the refractive index of the glass which is a symmetrical convex lens if its focal length is equal to the radius of curvature of its surface

Answers

Answered by Anonymous
39

\rm \huge \underline\mathfrak\green{Given:-}

\rm\dashrightarrow{ R_{(1)}  = R = f}

\rm\dashrightarrow{ R_{(2)}  = R = f}

\rm\huge \underline\mathfrak  \green{Find :-}

  • find the refractive index of the glass.

\rm\huge\underline\mathfrak \green{ Solution:-}

We know that,

\rm \dashrightarrow{Refractive \:  index \:  of \:  glass = 1.5.}

 \:  \:  \: \longrightarrow\rm{  \frac{1}{f}  = (n - 1) \times  \frac{2}{f} }

 \:  \:  \:  \: \longrightarrow\rm{ 2n - 2 = 1}

 \:  \:  \:  \:  \:  \: \longrightarrow\rm{ 2n = 3}

 \:  \:  \:  \:  \:  \: \longrightarrow\rm{ n =  \frac{3}{2} }

 \:  \:  \:  \:  \:  \:  \rm\longrightarrow \fbox  \red{n =  1.5}

━─━─━─━─━─━─━─━─━─━─━─━

\bf\bigstar\green {  \: Physics  \:  \: formula:- }

 \:  \:  \:  \:  \:  \: \begin{gathered}\boxed{\begin{array}{cc}\sf formula&\\\frac{\qquad }{ }{}\\\sf\frac{1}{f} =  \frac{1}{v}  -  \frac{1}{u}  &\  \\\\\sf  \: v =  v_{o} + at &\\\\\sf p = mv &\\\\\sf \: p = f + v&\\ &\end{array}}\end{gathered}

Answered by as3801504
4

Answer:

 \underline{ \boxed{\mathbb{\red{⛄solution♡࿐⛄}}}} \\  \\ We  \: know \:  that, \\ </p><p></p><p>\rm \dashrightarrow{Refractive \: index \: of \: glass = 1.5 . } \\  \\ ⇢Refractive \: index \: of \: glass=1.5. \\ </p><p></p><p>\: \: \: \longrightarrow\rm{ \frac{1}{f} = (n - 1) \times \frac{2}{f} } \\ ⟶f1=(n−1)×f2 \\ </p><p></p><p>\: \: \: \: \longrightarrow\rm{ 2n - 2 = 1} \\ ⟶2n−2=1 \\ </p><p></p><p>\: \: \: \: \: \: \longrightarrow\rm{ 2n = 3} \\ ⟶2n=3 \\ </p><p></p><p>\: \: \: \: \: \: \longrightarrow\rm{ n = \frac{3}{2} } \\ ⟶n=23 \\ </p><p></p><p>\: \: \: \: \: \: \rm\longrightarrow \fbox \pink{n = 1.5}  { \boxed{\mathbb{\orange{⛄answer}}}}\\ ⟶n = 1.5</p><p></p><p>

Explanation:

hope \: it \: help \: fulfor \: you

Similar questions