Find the relation between a and b if the equation 2x + 3y = 7 and 2x + (a+b)y = 28 has infinite solutions. class 10
Answers
Answered by
0
Step-by-step explanation:
Given : 2x+3y=7
2ax+(a+b)y=28
Comparing 2x+3y=7 with a
1
x+b
1
y+c
1
=0, we get,
a
1
=2,b
1
=3,c
1
=−7
Comparing 2ax+(a+b)y=28 with a
2
x+b
2
y+c
2
=0
a
2
=2a,b
2
=(a+b),c
2
=−28
For infinitely many solutions, we know,
a2
a 1
= b2
b 1
= c2
c 1
2a
2= a+b
3 = 287
∴ 2a
2 = a+b3
⟹6a=2a+2b
⟹4a=2b
⟹2a=b
Similar questions