Math, asked by ssanjithkumar2006, 9 months ago

find the relationship between a,b and c .if 5^a=3^b=225^c. where a≠b,b≠c and c≠a.

Answers

Answered by gjenagjena66
5

 {5}^{a}  =  {3}^{b}  =  {225}^{c}  = k \\  \\  {k}^{ \frac{1}{a} }  = 5 \\  \\  {k}^{ \frac{1}{b} }  = 3 \\  \\  {k}^{ \frac{1}{c} }  = 225 \\  \\  {k}^{ \frac{1}{c} }  =   {15}^{2}   \\  \\ =  {(5 \times 3)}^{2}  \\  \\  {k}^{ \frac{1}{c} } =  { ({k}^{ \frac{1}{a} } \times  {k}^{ \frac{1}{b} } ) }^{2}  \\  \\  \frac{1}{c}  =  \frac{2}{a}  +  \frac{2}{b}

<b><body bgcolor=yellow><marquee direction="down"><font color=magenta></b>

Plzz mark this as BRAINLIEST.

<b><body bgcolor=yellow><marquee direction="right"><font color=magenta></b>

Like it♡.

Follow me.

Similar questions