Math, asked by preet429, 3 months ago

Find the remainder of the polynomial
(1)
P(x) = 2x^3- x^2- 4x +8 is divided by X+1
(2)
p(X)=2x^3-3x^2+4x-5 I'd divided by 2x+1
(3)
p(X)=X^3-ax^2+7x+8 Is divided by x-1 leaves remainder 7.Find 'a'​

Answers

Answered by harshitha926594
1

Step-by-step explanation:

1) \:  \:  \:  \: x + 1 = 0 \\  \:  \:  \:  \:  \:  \large{ \boxed{x =   \underline{ \underline{- 1}}}} \\  \\  \:  \:  \:  \: p(x) = 2 {x}^{3}  -  {x}^{2}  - 4x + 8 \\  \:  \:  \:  \:  = 2 {( - 1)}^{3}  -  {( - 1)}^{2}  - 4( - 1) + 8 \\  \:  \:  \:  \:  = (2 \times  - 1) - (1) - (4 \times  - 1) + 8 \\  \:  \:  \:  \:  =  - 2 - 1 + 4 + 8 \\ \:  \:  \:  \:   \large{ \boxed{=  \:  \underline{ \underline{9}}}} \\  \\ 2) \:  \:  \:  \: 2x + 1 = 0 \\ \:  \:  \:  \:  2x =  - 1 \\  \:  \:  \:  \:  \:  \large{ \boxed{x =   \underline{ \underline{\frac{ - 1}{2} }}}} \\  \\  \:  \:  \:  \: p(x) = 2 {x}^{3}  - 3 {x}^{2}  + 4x - 5 \\  \:  \:  \:  \:  = 2 {( \frac{ - 1}{2}) }^{3}  - 3 { (\frac{ - 1}{2}) }^{2} + 4( \frac{ - 1}{2} ) - 5 \\  \:  \:  \:  \:  = (2 \times  \frac{ - 1}{8} ) - (3 \times  \frac{ - 1}{4} ) + (4 \times  \frac{ - 1}{2} ) - 5 \\  \:  \:  \:  \:  =  \frac{ - 1}{4}  -  \frac{ - 3}{4}  + ( - 2) - 5 \\   \:  \:  \:  \: = ( \frac{ - 1 - ( - 3)}{4} ) - 2 - 5 \\  \:  \:  \:  \:  = ( \frac{ - 1 + 3}{4} ) - 7 \\  \:  \:  \:  \:  =  \frac{2}{4}  - 7 \\  \:  \:  \:  \:  = \frac{1}{2}  - 7 \\  \:  \:  \:  \:  =  \frac{1 -14}{2}  \\  \:  \:  \:  \:  \large{ \boxed{ =  \underline{ \underline{ \frac{ - 13}{2}}}}}  \\  \\ 3) \:  \:  \:  \: x - 1 = 0 \\  \:  \:  \:  \:  \:  \large{ \boxed{x =  \underline{ \underline{1}}}} \\  \\  \:  \:  \:  \: p(x) = {x}^{3}  - a {x}^{2}  + 7x + 8 = 7 \\  \:  \:  \:  \:   \:   {1}^{3}  - a {(1)}^{2}  + 7(1) + 8 = 7 \\  \:  \:  \:  \:   \:  1 - (a \times 1) + 7 + 8 = 7 \\  \:  \:  \:  \:   \:  1 - a + 15 = 7 \\  \:  \:  \:  \:   \:  16 - a = 7 \\ 16 - 7 = a \\   \large{ \boxed{\underline{ \underline{9}} = a}}

Similar questions