Math, asked by melfeenatilda, 5 months ago

find the remainder when 1021^1022 is divided by 1023?​

Answers

Answered by cherukurireddemma12
0

Step-by-step explanation:

1 only yaar you can try it

Answered by Anonymous
3

Answer:

《 1,622 》

Using mod 10,001 ,

10k ≡ -1

1m ≡ -100

Let N=1,001,001²

①N²

= (1m+1k+1)²

={ [-100]+1,001 }²

= 901²

= (900+1)²

=810k+1,801

≡ [-81]+1,801

≡1,720

②N^4

= 1720²

≡ (1700+20)²

≡ 2m+890k+68k+400

≡ [-200–89–6]+8k+400

≡ 400–295+8k

≡ 8105

③ N^8

≡ 8105²

≡ (8100+5)²

≡ (65m+610k)+81k+25

≡ [-6,500–61–7]+11,025

≡ 4,457

④N^16

≡ 4457²

≡ (4500–43)²

≡ (20m+250k)-387k+1849

≡ [-2k-25+39]+4849

≡ 2,863

⑤ N^32

≡ 2,863²

≡ (2800+63)²

≡ (7m+840k)+100(56)(63)+63²

≡ [-700–84]+(352k+800)+3,969

≡ -784+[-35]+2k+800+3,969

≡ 5,950

⑥N^64

≡ 5950²

≡ (6k–50)²

≡ 36m-600k+2500

≡ [-3600+60]+2500

≡ -1,040+[10k+1]

≡ 8,961

⑦N^128

≡ 8961²

≡ (9k–39)²

≡ 81m-702k+1521

≡ [-8,100+70]-479

≡ -8,509+[10k+1]

≡ 1,492

⑧ N^256

≡ 1492²

≡(1500–8)²

≡ (2m+250k)-24k+64

≡ [-200–25+2]-4k+64+[10k+1]

≡ 6,067–225

≡ 5,842

⑨ N^512

≡ 5,842²

≡ (6k-158)²

≡ 36m-1896k+(150+8)²

≡ [-3600+189]-6k+22k+500+2400+64

≡ 10k+6k-1200+689+64

≡ [-1]+4800+753

≡ 5,552

⑨ N^1024

≡ 5,552²

≡ (5,500+52)²

≡ 30m+250k+(52×11k)+2,704

≡ [-3k-25]+572k+2,704

≡ -3k–25+[-57]+4704

≡ 1,704–82

≡ 1,622

252 views

Step-by-step explanation:

Similar questions