Find the remainder when (5a²-80) is divided by 5a(a-4).
Answer the question as fast as possible!
The correct answer will be marked as the Brainliest!
Answers
Answered by
0
Step-by-step explanation:
How to solve your question
Your question is
(
5
2
−
8
0
)
(5a^{2}-80)
(5a2−80)
Grouping
1
Common factor
(
5
2
−
8
0
)
(5a^{2}-80)
(5a2−80)
5
(
2
−
1
6
)
5(a^{2}-16)
5(a2−16)
2
Use the sum-product pattern
5
(
2
−
1
6
)
5(a^{2}{\color{#c92786}{-16}})
5(a2−16)
5
(
2
+
4
−
4
−
1
6
)
5(a^{2}+{\color{#c92786}{4a}}{\color{#c92786}{-4a}}-16)
5(a2+4a−4a−16)
3
Common factor from the two pairs
5
(
2
+
4
−
4
−
1
6
)
5(a^{2}+4a-4a-16)
5(a2+4a−4a−16)
5
(
(
+
4
)
−
4
(
+
4
)
)
5(a(a+4)-4(a+4))
5(a(a+4)−4(a+4))
4
Rewrite in factored form
5
(
(
+
4
)
−
4
(
+
4
)
)
5(a(a+4)-4(a+4))
5(a(a+4)−4(a+4))
5
(
−
4
)
(
+
4
)
5(a-4)(a+4)
5(a−4)(a+4)
Solution
5
(
−
4
)
(
+
4
)
5(a-4)(a+4)
5(a−4)(a+4)
p
Answered by
1
Answer:
4
Step-by-step explanation:
see answer in picture
hope this helps you
Attachments:
Similar questions