Math, asked by mimisama, 8 months ago

find the remainder when a²x² +ax + 1 is divided by ax +1

Answers

Answered by mysticd
3

 Let \: p(x) = a^{2}x^{2} + ax + 1

 If \: p(x) \:is \: divided \: by \: (ax + 1 ) \:then

 the \: remainder \: is \: p\Big( \frac{-1}{a}\Big)

 p\Big( \frac{-1}{a}\Big) = a^{2}\times \Big( \frac{-1}{a}\Big)^{2} + a \times \Big( \frac{-1}{a}\Big) +1

 = a^{2} \times \frac{1}{a^{2}} -1 + 1

 = 1

Therefore.,

 \red{ Remainder } \green { = 1 }

•••♪

Answered by Anonymous
5

ANSWER

\dashrightarrow P(x)= a^2x^2+ax+1

\dashrightarrow g(x)= ax+1\\ \implies  ax+1=0\\ \implies x= \dfrac{-1}{a}

\implies p\bigg( \dfrac{-1}{a} \bigg) = a^2 \bigg( \dfrac{-1}{a} \bigg)^2+ a\bigg( \dfrac{-1}{a} \bigg) +1

\implies p\bigg( \dfrac{-1}{a} \bigg)= a^2 \bigg( \dfrac{1}{a^2} \bigg) + \cancel{a}\:\:\bigg( \dfrac{-1}{\cancel{a}} \bigg) +1

\implies p\bigg( \dfrac{-1}{a} \bigg)= \cancel{a^2} \bigg( \dfrac{1}{\cancel{a^2}} \bigg) + \cancel{a}\:\:\bigg( \dfrac{-1}{\cancel{a}} \bigg)+1

\implies 1+(-1)+1

\implies 1-1+1

\implies 1

\large{\boxed{\bf{ \star\:\: remainder=1 \:\: \star}}}

___________

Similar questions