find the remainder when f(x)=x^3-6x^2+2x-4 is divied by 3x-1 and verify the result by actual division
Answers
Answered by
0
Step-by-step explanation:
Here, g(x)=3x−1. To apply Remainder theorem, (3x−1) should be converted to (x−a) form.
∴3x−1=31(3x−1)=x−31∴g(x)=(x−31)
By remainder theorem, r(x)=p(a)=p(31)
p(x)=x3−6x2+2x−4⇒p(31)=(31)3−6(31)2+2(31)−4
=271−96+32−4=271−18+18−108=27−
Answered by
0
Answer:
g(x)=(x−
3
1
)
By remainder theorem, r(x)=p(a)=p(
3
1
)
p(x)=x
3
−6x
2
+2x−4⇒p(
3
1
)=(
3
1
)
3
−6(
3
1
)
2
+2(
3
1
)−4
=
27
1
−
9
6
+
3
2
−4=
27
1−18+18−108
=
27
−107
∴ the remainder p(
3
1
)=−
27
107
Similar questions