Math, asked by sushanthdeepak393, 5 months ago

find the remainder when f(x)=x^3-6x^2+2x-4 is divied by 3x-1 and verify the result by actual division​

Answers

Answered by abduls1934
0

Step-by-step explanation:

Here, g(x)=3x−1. To apply Remainder theorem, (3x−1) should be converted to (x−a) form.

∴3x−1=31(3x−1)=x−31∴g(x)=(x−31)

By remainder theorem, r(x)=p(a)=p(31)

p(x)=x3−6x2+2x−4⇒p(31)=(31)3−6(31)2+2(31)−4

=271−96+32−4=271−18+18−108=27−

Answered by pawarankita9c10
0

Answer:

g(x)=(x−

3

1

)

By remainder theorem, r(x)=p(a)=p(

3

1

)

p(x)=x

3

−6x

2

+2x−4⇒p(

3

1

)=(

3

1

)

3

−6(

3

1

)

2

+2(

3

1

)−4

=

27

1

9

6

+

3

2

−4=

27

1−18+18−108

=

27

−107

∴ the remainder p(

3

1

)=−

27

107

Similar questions