Math, asked by sainath323, 1 year ago

Find the remainder when f(x)=x^4-3x^2+4 is divided by g(x)=x-2 and verify the result by actual division

Answers

Answered by ashishks1912
84

GIVEN :

Find the remainder when f(x)=x^4-3x^2+4 is divided by g(x)=x-2 and verify the result by actual division

TO FIND :

The remainder when f(x)=x^4-3x^2+4 is divided by g(x)=x-2 and verify the result by actual division

SOLUTION :

Given that the functions are f(x)=x^4-3x^2+4 is divided by g(x)=x-2 and verify the result by actual division

Put x=2 in f(x) we get

f(2)=2^4-3(2)^2+4

=16-12+4

=20-12

=8

⇒ f(2)=8

∴ remainder = 8

Now we can verify it by actual division method, f(x) can be written as f(x)=x^4+0x^3-3x^2+0x+4

Now divide f(x) by g(x) as below :

          x^3+2x^2+x+2

      _____________________

x-2 ) x^4+0x^3-3x^2+0x+4

        x^4-2x^3

      _(-)__(+)____

                 2x^3-3x^2

                 2x^3-4x^2

               _(-)___(+)______

                              x^2+0x

                               x^2-2x

                          __(-)__(+)______

                                             2x+4

                                             2x-4

                                          _(-)_(+)___

                                                  8

                                          ________

When the given function f(x) is divided by g(x) then the remainder is 8 and it is verified by actual division.

∴ remainder = 8

Answered by ttgsatyam
33

Answer:

remainder =8

explaination

f(2)=2^4-3(2)+4

=16-12+4

=20-12

=8

Similar questions