Math, asked by vakshwankawala, 2 months ago

Find the remainder, when f(y) = 4y3 – 12y2 + 11y – 5 is divided by g(y) = 2y – 1​

Answers

Answered by mathdude500
4

\large\underline{\bold{Given \:Question - }}

 \sf \:Find \:  the \:  remainder,  \: when \:  f(y) \:  =  {4y}^{3}  -  {12y}^{2}  + 11y - 5

 \sf \: is \: divided \: by \: g(y) = 2y - 1

\large\underline{\bold{Solution-}}

Concept Used :-

Remainder Theorem :-

  • This theorem states that if f(x) is a polynomial in x, then the remainder on dividing f(x) by x − a is f(a).

Let's solve the problem now!!

Now it is given that

 \sf \: g(y) = 2y - 1

Put g(y) = 0, we get,

 \sf \: 2y - 1 = 0

 \sf \: so \: y \:  =  \: \dfrac{1}{2}

Now,

Given that,

 \sf \: f(y) \:  =  {4y}^{3}  -  {12y}^{2}  + 11y - 5

So, remainder when f(y) is divided by 2y - 1 is given by

 \sf \: f\bigg( \dfrac{1}{2} \bigg)

 \sf \:  =  \: 4 {\bigg( \dfrac{1}{2} \bigg) }^{3} - 12 {\bigg( \dfrac{1}{2} \bigg) }^{2} + 11 {\bigg( \dfrac{1}{2} \bigg) } - 5

 \sf \:  =  \: 4 \times \dfrac{1}{8}  - 12 \times \dfrac{1}{4}  + 11 \times \dfrac{1}{2}  -

 \sf \:  =  \: \dfrac{1}{2}  - 3 + \dfrac{11}{2}  - 5

 \sf \:  =  \: 6 - 8

 \sf \:  =  \:  -  \: 2

Additional Information :-

Factor Theorem :-

  • This theorem states that if f(x) is a polynomial in x then the remainder on dividing f(x) by x − a is 0, then x - a is factor of f(x).

Similar questions