Math, asked by nadhanasrin7506, 9 months ago

Find the remainder when p(x)=4x³+8x²-7x+10 is divided by (2x-1)

Answers

Answered by Anonymous
1

hope it will help you:-)

Attachments:
Answered by Anonymous
3

\huge{\underline{\underline{\bf{Solution}}}}

\rule{200}{2}

\tt given\begin{cases} \sf{P(x) = 4x^3 + 8x^2 - 7x + 10} \\ \sf{Polynomial \: is \: devided \: by \: (2x - 1)} \end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to find the remainder.

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

(2x - 1) = 0

→2x = 1

→x = 1/2

\sf{→6(\frac{1}{2})^3 + 8 (\frac{1}{2})^2 - 7 (\frac{1}{2}) + 10} \\ \\ \sf{→\frac{\cancel{6}}{\cancel{8}} + \frac{\cancel{8}}{\cancel{4}} - \frac{7}{2} + 10} \\ \\ \sf{→\frac{3}{4} + \frac{1}{2} - \frac{7}{2} + 10} \\ \\ \sf{→\frac{3 + 2 - 14 + 40}{4}} \\ \\ \sf{→\frac{31}{4}}

\Large{\star{\boxed{\sf{Remainder = \frac{31}{4}}}}}

Similar questions