Math, asked by dhruv1896, 11 months ago

Find the remainder when p(x) = x³- 2x² - 4x - 1 is divided by g(x) = x + 1. (Using long division)​

Answers

Answered by IMMORTALA11
11

Answer:

x+1/x^3+x^2-4x-1

x+1/x^3+x^2-4x-1. QUOTIENT x^2

(-) x^3+x^2

= x+1/-4x-1. Quotient. -4

(+) -4x-4

= Remainder = 3

Answered by pragyakirti12345
0

Answer: Remainder= 0

Concept : Algebraic division

Given : p(x) = x³ - 2x² - 4x - 1, g(x) = x + 1

To Find : Remainder using long division

Step-by-step explanation:

p(x) = x³ - 2x² - 4x - 1, and  g(x) = x + 1

Divisor         Dividend                  Quotient        Remainder

x + 1              x³ - 2x² - 4x - 1               x²              - 3x² - 4x - 1

x + 1               - 3x² - 4x - 1                  - 3x            - x - 1

x  + 1                -x - 1                             -1                     0

∴ The remainder will be 0.

#SPJ2

Attachments:
Similar questions