Math, asked by sri77777, 1 year ago

Find the remainder when
  {4y}^{3} +  {4y}^{2} - y - 1
is divided by 2y+1

Answers

Answered by Anonymous
2
Here is your answer it may help...
Attachments:
Answered by Bianchi
2
Hola..!!

For zeros,
2y + 1 = 0 \\  =  > 2y =  - 1 \\  =  > y =   \frac{ - 1}{2}
Let
p(y) = 4 {y}^{3}  + 4 {x}^{2}  - y - 1
Now,
p( \frac{ - 1}{2} ) = 4 \times  { (\frac{ - 1}{2} )}^{3}  + 4 \times  {( \frac{ - 1}{2}) }^{2}  - ( \frac{ - 1}{2} ) - 1 \\    \:  \:   \:  \:  \:  \:   \:  \:  \:   \:  \:  \: \:  \:  = 4 \times  (\frac{ - 1}{8} ) + 4 \times  \frac{1}{4}  +  \frac{1}{2}  - 1 \\  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  =  \frac{ - 1}{2}  + 1 +  \frac{1}{2}  - 1 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ - 1 + 2 + 1 - 2}{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 0
Therefore, Remainder = 0

Hope it'll help.
Similar questions