Math, asked by RICHAJhadav888, 1 year ago

Find the remainder when f_{(x)}= 12 x^3 - 13 x^2 - 5 x + 7 is divided by (3 x + 2).

Answers

Answered by Mathexpert
1
By Remainder theorem. if f(x) is divided by (x - a) then the remainder is f(a). 

Therefore,  if f(x) is divided by (ax + b) then the remainder is f(–b/a). 

If f(x) = 12x^3 - 13x^2 - 5x - 7 is divided by (3x + 2) then the remainder is f (\frac{-2}{3} )

 (\frac{-2}{3} ) = 12( \frac{-2}{3})^3 - 13 (\frac{-2}{3})^2 - 5( \frac{-2}{3}) - 7
                     
                          = 12( \frac{-8}{27}) - 13( \frac{4}{9}) +  \frac{10}{3} - 7
 
                          =  \frac{-32}{9} -  \frac{52}{9} +  \frac{10}{3} -  \frac{7}{1}

                          =  \frac{-32}{9} - \frac{52}{9} + \frac{30}{9} - \frac{63}{9}

                          =  \frac{-117}{9}
         
                          = –13

The remainder is –13

Similar questions