find the remainder when x^3+3x^2+3x+1 by (i) x+1 (ii) x-1/2 (iii) x (iv) x+π (v) 5+2x
Answers
Answer:
p(x) = x³+3x²+3x+1
(i) g(x) = x+1
x+1 = 0
x = -1
substitute in p(x) {according to remainder theorm}
(-1)³+3(-1)²+3(-1)+1
-1+3-3+1
= 0
(ii) g(x) = x-1/2
x-1/2 = 0
x = 1/2
substitute in p(x)
(-1/2)³+3(-1/2)²+3(-1/2)+1
-1/8+3/4-3/2+1
-1+6-12+8/8
-13+14/8
= 1/8
(iii) g(x) = x
no need to substitute because the question already has an X
==> x³+3x²+3x+1
(iv) g(x) = x+π
x = -π
substitute -π in the place of x
(-π)³+3(-π)²+3(-π)+1
-π³+3π²-3π+1
(v) g(x) = 5+2x
5+2x = 0
2x = -5
x = -5/2
substitute in place of x
(-5/2)³+3(-5/2)²+3(-5/2)+1
-125/8+75/4-15/2+1
-125+150-60+8/8
-185+158/8
= 27/8
I'm sure they r correct answers because I completed that lesson in 9th class, lesson-polynomials
hope it helps.....
Step-by-step explanation:
हल :
माना p(x) = x³ + 3x² + 3x +1
(i) (x + 1) का शून्यक (-1) है।
[∵ x + 1 = 0 , x = - 1]
∴ p(-1) = (-1)³ + 3(-1)² + 3(-1) + 1
⇒ p(-1) = -1 + 3 - 3 + 1
⇒ p(-1) = 2 - 2 = 0
⇒ p(-1) = 0
∴ अभीष्ट शेषफल = 0 (शेषफल प्रमेय से)
(ii) (x - 1/2) का शून्यक (1/2) है।
[∵ x - 1/2 = 0 , x = 1/2]
∴ p(1/2) = (1/2)³ + 3(1/2)² + 3(1/2) + 1
⇒ p(1/2) = 1/8 + ¾ + 3/2 + 1
⇒ p(1/2) = (1 + 6 + 12 + 8)/8
⇒ p(1/2) = 27/8
∴ अभीष्ट शेषफल = 27/8 (शेषफल प्रमेय से)
(iii) x का शून्यक (0) है।
∴ p(0) = (0)³ + 3(0)² + 3(0) + 1
⇒ p(0) = 0 + 0 + 0 + 1
⇒ p(0) = 1
∴ अभीष्ट शेषफल = 1 (शेषफल प्रमेय से)
(iv) (x + π) का शून्यक (-π) है।
[∵ x + π = 0 , x = - π]
∴ p(-π) = (-π)³ + 3(-π)² + 3(-π) + 1
⇒ p(-π) = -π³ + 3π² - 3π + 1
∴ अभीष्ट शेषफल = -π³ + 3π² - 3π + 1 (शेषफल प्रमेय से)
(v) (5 + 2x) का शून्यक (-5/2) है।
[∵ 2x + 5 = 0 , x = - 5/2]
∴ p(-5/2) = (-5/2)³ + 3(-5/2)² + 3(-5/2) + 1
⇒ p(-5/2) = -125/8 + 75/4 - 15/2 + 1
⇒ p(-5/2) = (-125 + 150 - 60 + 8)/8
⇒ p(-5/2) = -27/8
∴ अभीष्ट शेषफल = -27/8 (शेषफल प्रमेय से)