Find the remainder when x^3 +3x^2 +3x+1 is divided by x+1
Answers
Answer:
here is your answer
my friend
Answer:
By remainder theorem
By remainder theoremx+1=0
By remainder theoremx+1=0x=−1
By remainder theoremx+1=0x=−1p(x)=x
By remainder theoremx+1=0x=−1p(x)=x 3
By remainder theoremx+1=0x=−1p(x)=x 3 +3x
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1)
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1)
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2=4
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2=4Thus remainder is 4
Step-by-step explanation:
Hope this answers will help you