Math, asked by tameemtaj9229, 10 months ago

Find the remainder when x^4+x^2-2x^2+1 is divided by x-1

Answers

Answered by prince5132
6

GIVEN :-

  • Dividend = x⁴ + x² - 2x² + 1
  • Divisor = x - 1

TO FIND :-

  • The Remainder.

SOLUTION :-

▪︎Dividend = x + x² - 2x² + 1 = x - x² + 1

POLYNOMIAL DIVISION :-

\boxed{\begin{array}{l | n | r}\bf \:  x-1&amp;\sf x^4-x^2+1&amp;\sf x^3+x^2\\ &amp;\sf x^4-x^3\\ &amp; ( - )\:( + )\\&amp;\rule{55}{0.8}\\&amp;\sf\qquad x^3-x^2\\ &amp;\sf\qquad x^3-x^2\\ &amp;\qquad( - )\:\:( + )\\&amp;\quad\rule{60}{0.8}\\&amp;\qquad\qquad\sf1\end{array}}</p><p>

Hence we found Reamainder = 1

VERIFICATION :-

▪︎Dividend =[ Divisor × Quotient] + Remainder

= [(x - 1)(x³ + x²)] + 1

= [x (x³ + x²) -1 (x³ + x²)] + 1

= x⁴ + x³ - x³ - x² + 1

▪︎x - x² + 1 = x - x² + 1

L.H.S = R.H.S

HENCE VERIFIED

Similar questions