Math, asked by Savinidhi, 7 months ago

find the remainder when x^4+x^3-2x^2+2x+1 is divided by 3x-1​

Answers

Answered by hackergnsst
0

Answer:

remainder when x4+x3−2x2+x+1 is divided by x-1 is 2

Step-by-step explanation:

Given the polynomial

P(x)=x^4+x^3-2x^2+x+1P(x)=x4+x3−2x2+x+1

we have to find the remainder when above polynomial is divided by (x-1).

By remainder theorem

P(x)=x^4+x^3-2x^2+x+1P(x)=x4+x3−2x2+x+1

P(1)=(1)^4+(1)^3-2(1)^2+1+1P(1)=(1)4+(1)3−2(1)2+1+1

P(1)=1+1-2+2P(1)=1+1−2+2

P(1)=2P(1)=2

Hence, the remainder is 2

Answered by aryan073
2

Step-by-step explanation:

3x - 1 = 0

x =  \frac{1}{3}

 {x}^{4}  +  {x}^{3}  -  {2x}^{2}  + 2x + 1

 \frac{1}{16}  +  \frac{1}{8}  - 2 \frac{1}{4}  + 1 + 1 = 0

 \frac{3}{16}  -  \frac{1}{2}  + 2 = 0

 \frac{3}{16}  -  \frac{8}{16}  + 2 = 0

 \frac{ - 5}{16}  + 2 = 0

  \frac{ - 5 + 32}{16}  = 0

 \frac{27}{16}

 \frac{27}{16}  \:  \: is \: the \: remainder

Similar questions