Math, asked by yashikajaraniya, 2 months ago

find the remainder when x^4+x^3-2x^2+x+1 is divided by x-1​

Answers

Answered by praneeth61
7

Answer:

Reminder=2

Step-by-step explanation:

x-1) x⁴+x³-2x²+x+1( x²+x-x+1

x⁴. - x²

(-). (+)

_____________

x³-x²+x+1

x³. - x

(-). (+)

_______________

- x²+2x+1

- x²+ x

(+). (-)

_________________

x+1

x-1

(-) (+)

______________________

2

PLEASE MARK ME AS BRAINLIST

Answered by CuteAnswerer
15

GIVEN

  • \bf{p(x) =x^4+x^3-2x^2+x+1}

  • \bf{g(x) = x-1}

TO FIND :

  • Reminder.

SOLUTION :

  • By Remainder Theorem :

Let us assume g(x) = 0.

: \longrightarrow{ \tt{x -1 = 0}}\\

: \longrightarrow{ \tt{x = 0 +1}}\\

: \longrightarrow{ \bf{x =  1}}\\

Substituting the value of x :

:\longrightarrow{\tt{p(x) = x^4+x^3-2x^2+x+1}}\\ \\

: \longrightarrow{\tt{p(1) =(1)^4+(1)^3-2(1)^2+1+1}}\\ \\

: \longrightarrow{\tt{p(1) =1+1-2\times 1+1+1}}\\ \\

: \longrightarrow{\tt{p( 1) = 1+1 -2+1 + 1}} \\  \\

: \longrightarrow{\tt{p( 1) = 1 + 1 + 1 + 1  - 2}} \\  \\

: \longrightarrow{\tt{p( 1) =4 - 2 }} \\  \\

\longrightarrow{\underline{ \pink{\boxed{\bf{p( 1) = 2}}}}}

\huge{\green{\therefore}} Remainder = 2.

Similar questions