Find the remainder when x^4+x^3-8x^2+5x-8 is divided by x+2
winner will be marked as brainlist
Answers
Answered by
1
Answer:
Let us first divide the given polynomial x
4
+x
3
+8x
2
+ax+b by (x
2
+1) as shown in the above image:
From the division, we observe that the quotient is x
2
+x+7 and the remainder is (a−1)x+(b−7).
Since it is given that x
4
+x
3
+8x
2
+ax+b is exactly divisible by x
2
+1, therefore, the remainder must be equal to 0 that is:
(a−1)x+(b−7)=0
⇒(a−1)x+(b−7)=0⋅x+0
⇒(a−1)=0,(b−7)=0(Bycomparingcoefficients)
⇒a=1,b=7
Hence, a=1 and b=7.
Step-by-step explanation:
please mark as brainlist
Similar questions
Computer Science,
18 days ago
Psychology,
18 days ago
Math,
18 days ago
Science,
1 month ago
Math,
1 month ago
Biology,
9 months ago
English,
9 months ago