Math, asked by Praveenkumar04, 3 months ago

find the remainder when x³+3x²+1 is divided by (i) x+1 (ii) x-½ (iii) x.​

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

   \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \: \sf \: A \: polynomial \: f(x) =  {x}^{3}  + 3 {x}^{2}  + 1

\large\underline{\sf{To\:Find - }}

Remainder when f(x) is divided by

 \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \bull \:  \sf \: x \:  +  \: 1

 \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \bull \:  \sf \: x - \dfrac{1}{2}

 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \bull \:  \sf \: x

Concept Used :-

Remainder Theorem :-

This theorem states that if f(x) is a polynomial in x, then the remainder on dividing f(x) by x − a is f(a).

Let's solve the problem now!!

\large\underline{\sf{Solution-(i)}}

\rm :\longmapsto\:Let \: x + 1 = 0

\rm :\longmapsto\:x =  - 1

Now, we have to find the remainder when f(x) is divided by x + 1.

Using Remainder Theorem,

  • The remainder is given by f(-1)

So,

\rm :\longmapsto\:f( - 1) =  {( - 1)}^{3}  + 3 {( - 1)}^{2}  + 1

\rm :\longmapsto\:f( - 1) =  - 1 + 3 + 1

\bf\implies \:f( - 1) = 3

\large\underline{\sf{Solution-(ii)}}

\rm :\longmapsto\:Let \: x \:  -  \: \dfrac{1}{2}  = 0

\rm :\longmapsto\:x \:  =  \: \dfrac{1}{2}

Now, we have to find the remainder when f(x) is divided by x + 1/2.

Using Remainder Theorem,

  • The remainder is given by f(-1/2)

So,

\rm :\longmapsto\:f\bigg( \dfrac{1}{2} \bigg)  =  {\bigg( \dfrac{1}{2} \bigg) }^{3}  + 3 {\bigg( \dfrac{1}{2} \bigg) }^{2}  + 1

\rm :\longmapsto\:f\bigg( \dfrac{1}{2} \bigg)  = \dfrac{1}{8}  + \dfrac{3}{4}  + 1

\rm :\longmapsto\:f\bigg( \dfrac{1}{2} \bigg)  = \dfrac{1 + 6 + 8}{8}

\bf\implies \:f\bigg( \dfrac{1}{2} \bigg)  = \dfrac{15}{8}

\large\underline{\sf{Solution-(iii)}}

\rm :\longmapsto\:Let \: x \:  =  \: 0

\rm :\implies\:x = 0

Now, we have to find the remainder when f(x) is divided by x

Using Remainder Theorem,

  • The remainder is given by f(0)

So,

\rm :\longmapsto\:f(0) =  {(0)}^{3}  + 3 \times  {(0)}^{2}  + 1

\bf\implies \:f(0) = 1

Additional Information :-

Factor Theorem :-

This theorem states that if f(x) is a polynomial in x then the remainder on dividing f(x) by x − a is 0, then x - a is factor of f(x).

Similar questions