Math, asked by hello5231, 6 months ago

find the remainder when
x³+3x²+3x+1 divided by

(i)x+1 (ii) x -\frac{1}{2} (iii) x

\red{\bf{please\: solve\: it\: as \:soon \:as \:possible}}

Attachments:

Answers

Answered by BlessOFLove
6

\pink{\bf{(i)x+1}}

  • \pink{\bf{put \:the\: value\: of \:x+1=0}}

⠀⠀⠀⠀⠀⠀⠀⠀{\bf{x+1=0}}

⠀⠀⠀⠀⠀⠀⠀⠀{\bf{x= -1}}

  • \pink{\bf{now\: put}} \pink{\bf{-1}}\pink{\bf{\: in\: place\: of\:x}}

{\bf{P(0)=x³+3x²+3x+1}}

{\bf{P(-1)=(-1)³+3(-1)²+3(-1)+1}}

{\bf{= -1+3-3+1}}

{\bf{= 4-4}}

\red{\bf{=0}\boxed{\bf{answer}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\pink{\bf{(ii)x -\frac{1}{2}}}

  • \pink{\bf{put\: the\: value\: of \: x -\frac{1}{2}=0}}

⠀⠀⠀⠀⠀⠀⠀{\bf{x -\frac{1}{2}=0}}

⠀⠀⠀⠀⠀⠀⠀{\bf{x= \frac{1}{2}}}

  • \pink{\bf{now \:put \frac{1}{2}\:in \:the\: place\: of\:x}}

{\bf{P(0)=x³+3x²+3x+1}}

P({\bf{\frac{1}{2}}}){\bf{= x( \frac{1}{2})³+3(\frac{1}{2} )²+3( \frac{1}{2}) +1}}

{\bf{\frac{1}{8}+ \frac{3}{4} + \frac{3}{2}+\frac{1}{1}}}

{\bf{\frac{1+6+12+8}{8}}}

={\pink{\frac{27}{8} \pink{\bf{\boxed{answer}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\pink{\bf{(iii)\:x}}

  • \pink{\bf{put \:the \:value\: of x=0}}

{\bf{x=0}}

{\bf{x³+3x²+3x+1}}

{\bf{ (0)³ + 3(0)²+3(0)+1}}

\red{\bf{=1}}\boxed{\pink{\bf{answer}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

x + 1 = 0

x = -1

P(x) = + 3x² + 3x + 1

P(-1) = (-1)³ + 3(-1)² + 3(-1) + 1

P(-1) = -1 + 3 - 3 + 1

P(-1) = 0

Remainder = 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

x - 1/2 = 0

x = 1/2

P(x) = x³ + 3x² + 3x + 1

P(1/2) = (1/2)³ + 3(1/2)² + 3(1/2) + 1

P(1/2) = 1/8 + 3/4 + 3/2 + 1

P(1/2) = 27/8

Remainder = 27/8

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

x = 0

P(x) = x³ + 3x² + 3x + 1

P(0) = (0)³ + 3(0)² + 3(0) + 1

P(0) = 0 + 0 + 0 + 1

P(0) = 1

Remainder = 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions