Math, asked by Rajesh1819, 10 months ago

Find the remainder when x³-px²+bx-p is divided by x-p

Answers

Answered by kodurirama
0

Answer:

  • bx-x

Step-by-step explanation:

  • x-p)x^3 - px^2 + bx - p(x^2 + 1
  • (+) x^3 - px^2

_(-)___(+)____________

  • 0 + bx - p
  • + x - p

_______________(-)__(+)_______

  • bx - x + 0

  1. therefore , remainder is bx - x
Answered by DangerousBomb
4

\star{\mathbb{\underline{ANSWER:}}}

 let \: p(x) = {x}^{3} - p{x}^{2} + 6x - p

 Divisor \: = x – p

 Zero \:of \: x – p = p

{By \:remainder \:theorem,}

If \:p(x) \:is \:divided \:by \:(x – p), \:then \:the \:remainder \:is \:p(p)

 p ( p) = {p}^{3} - p ({p})^{2}+ 6 (p) -p

={p}^{3}-{p}^{3}+6p- p

 = 6p - p

 =5p

Similar questions