Math, asked by Anonymous, 3 months ago

Find the remainder (without division) on dividing f(x) by (x + 3) where :

① f(x) = 2x² - 7x - 1
② f(x) = 3x³ - 7x² + 11x + 1
____________________​

Answers

Answered by MrRdx
293

Since x + 3 = x - ( -3 ), by cor. 1 to remainder theorem :

━━━━━━━━━━━━━━━━━━

① f(x) = 2x² - 7x - 1

Remainder ➤ f(-3)

➤ 2. (-3)² - 7. (-3) - 1

➤ 2.9 + 21 - 1

➤ 18 + 21 - 1

➤ 38

  • Hence, the remainder is 38.

━━━━━━━━━━━━━━━━━━

② f(x) = 3x³ - 7x² + 11x + 1

☆ Remainder ➤ f(-3)

➤ 3. (-3)³ - 7. (-3)² + 11. (-3) + 1

➤ 3.(-27) - 7.9 - 33 + 1

➤ - 81 - 63 - 33 + 1

➤ -176

  • Hence, the remainder is -176.

━━━━━━━━━━━━━━━━━━

Answered by ItzBlinkingstar
2

\huge\mathbb\fcolorbox{purple}{lavenderblush}{✰Answer}

✧══════•❁❀❁•══════✧

✠ Since x + 3 = x - ( -3 ), by cor. 1 to remainder theorem :

━━━━━━━━━━━━━━━━━━

① f(x) = 2x² - 7x - 1

☆ Remainder ➤ f(-3)

➤ 2. (-3)² - 7. (-3) - 1

➤ 2.9 + 21 - 1

➤ 18 + 21 - 1

➤ 38

Hence, the remainder is 38.

━━━━━━━━━━━━━━━━━━

② f(x) = 3x³ - 7x² + 11x + 1

☆ Remainder ➤ f(-3)

➤ 3. (-3)³ - 7. (-3)² + 11. (-3) + 1

➤ 3.(-27) - 7.9 - 33 + 1

➤ - 81 - 63 - 33 + 1

➤ -176

Hence, the remainder is -176.

✧══════•❁❀❁•══════✧

\:   \: \: \:   \: \: \: \: \: \: \:  \: \: \boxed {\boxed{ { \blue{ \bf{ {I  \:Hope \:   It  \: Helps  \:  You}}}}}}

 \bf \underline{ \purple{Regards:}}

 \bf\: \: \: \: \:  \: \: \underline{ \underline \pink{ ItzBlìnkìngstar}}

Similar questions