Find the remainder (without division) on dividing f(x) by (x + 3) where :
① f(x) = 2x² - 7x - 1
② f(x) = 3x³ - 7x² + 11x + 1
____________________
Answers
✠ Since x + 3 = x - ( -3 ), by cor. 1 to remainder theorem :
━━━━━━━━━━━━━━━━━━
① f(x) = 2x² - 7x - 1
☆ Remainder ➤ f(-3)
➤ 2. (-3)² - 7. (-3) - 1
➤ 2.9 + 21 - 1
➤ 18 + 21 - 1
➤ 38
- Hence, the remainder is 38.
━━━━━━━━━━━━━━━━━━
② f(x) = 3x³ - 7x² + 11x + 1
☆ Remainder ➤ f(-3)
➤ 3. (-3)³ - 7. (-3)² + 11. (-3) + 1
➤ 3.(-27) - 7.9 - 33 + 1
➤ - 81 - 63 - 33 + 1
➤ -176
- Hence, the remainder is -176.
━━━━━━━━━━━━━━━━━━
✧══════•❁❀❁•══════✧
✠ Since x + 3 = x - ( -3 ), by cor. 1 to remainder theorem :
━━━━━━━━━━━━━━━━━━
① f(x) = 2x² - 7x - 1
☆ Remainder ➤ f(-3)
➤ 2. (-3)² - 7. (-3) - 1
➤ 2.9 + 21 - 1
➤ 18 + 21 - 1
➤ 38
Hence, the remainder is 38.
━━━━━━━━━━━━━━━━━━
② f(x) = 3x³ - 7x² + 11x + 1
☆ Remainder ➤ f(-3)
➤ 3. (-3)³ - 7. (-3)² + 11. (-3) + 1
➤ 3.(-27) - 7.9 - 33 + 1
➤ - 81 - 63 - 33 + 1
➤ -176
Hence, the remainder is -176.
✧══════•❁❀❁•══════✧