Math, asked by gauravbigbrain, 1 month ago

Find the remainder (without division) when :
(a) 8x² + 5x + 1 is divided by x - 10.
(b) x² + 7x - 11 is divided by 3x-2
(c) 4x - 3x² + 2x - 4 is divided by x + 2

Is any Moderator here to solve this ? ​

Answers

Answered by tinyriju2006
37

Answer:

(a) 10

(b) -539

(c) -52

Step-by-step explanation:

(a) Here, f(x) = 8x2 + 5x + 1.

By remainder Theorem,

The remainder when f(x) is divided by x – 10 is f(10).

__________________________________________________________

(b)  Here, f(x) = x2 + 7x – 11 and 3x - 2 = 0 ⟹  x = 23

By remainder Theorem,

The remainder when f(x) is divided by 3x - 2 is f(23).

Therefore, remainder = f(23) = (23)2 + 7 ∙ (23) - 11

= 49 + 143 - 11

= -539

__________________________________________________________

(c) Here, f(x) = 4x3 - 3x2 + 2x - 4 and x + 2 = 0 ⟹  x = -2

By remainder Theorem,

The remainder when f(x) is divided by x + 2 is f(-2).

Therefore, remainder = f(-2) = 4(-2)3 - 3 ∙ (-2)2 + 2 ∙ (-2) - 4

= - 32 - 12 - 4 - 4

= -52

__________________________________________________________

                                please mark me as brainlist

Answered by ItzAshi
468

Step-by-step explanation:

{\Large{\mathbf{\orange{Question  \: 1 :}}}} \\

8x² + 5x + 1 is divided by x - 10

{\large{\mathrm{\underline{\pink{Solution:}}}}} \\

Here, f(x) = 8x² + 5x + 1

By Remainder Theorem,

{\bold{\rm{⟼ \:  \:  \:  \:  \:  The  \: remainder  \: when  \: f(x) \:  is \:  divided \:  by \:  x \:  -  \: 10 \:  is \:  f(10)}}} \\  \\

{\bold{\sf{∴  \:  \:  \:  \:  \: remainder  \: = \:  f(10)}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \: f(10)  \: = \:  8  \: × \:  10² \:  +  \: 5  \: × \:  10  \: + \:  1}}} \\  \\

{\bold{⟼ \:  \:  \:  \:  \:  \: }}{\large{\mathrm{\underline{\fbox{\red{f(10) \:  =  \: 851}}}}}} \\  \\  \\

{\Large{\mathbf{\orange{Question  \: 2 :}}}} \\

x² + 7x - 11 is divided by 3x - 2

{\large{\mathrm{\underline{\pink{Solution:}}}}} \\

Here, f(x) = x² + 7x - 11

{\bold{\sf{3x \:  - \:  2  \: =  \: 0}}} \\

{\bold{\sf{x  \: =  \: \frac{2}{3}}}} \\

By Remainder Theorem,

{\bold{\rm{⟼ \:  \:  \:  \:  \:  The  \: remainder  \: when \:  f(x)  \: is  \: divided  \: by  \: 3x  \: -  \: 2  \: is  \: f  \: \Big(\frac{2}{3}\Big)}}} \\  \\

{\bold{\sf{∴ \:  \:  \:  \:  \:  remainder \:  =  \: f \Big(\frac{2}{3}\Big)}}} \\  \\

{\bold{\rm{⟼ \:  \:  \:  \:  \:  f {\Big(\frac{2}{3}\Big)  \: = \:  \Big(\frac{2}{3}\Big)}^{2}  \: + \:  7 \: \Big(\frac{2}{3}\Big) \:  -  \: 11}}} \\  \\

{\bold{\rm{⟼ \:  \:  \:  \:  \:   \frac{4}{9}  \: + \:  \frac{14}{3} \:  -  \: 11}}} \\  \\

 {\bold{⟼ \:  \:  \:  \:  \: }}{\large{\underline{\boxed{\mathrm{\red{- \:  \: \frac{53}{9}}}}}}} \\  \\  \\

{\Large{\mathbf{\orange{Question  \: 3 :}}}} \\

4x - 3x² + 2x - 4 is divided by x + 2

{\large{\mathrm{\underline{\pink{Solution:}}}}} \\

Here, f(x) = 4x - 3x² + 2x - 4

{\bold{\sf{x \:  + \:  2  \: =  \: 0}}} \\

{\bold{\sf{x  \: =  \: -2}}} \\

By Remainder Theorem,

{\bold{\rm{⟼ \:  \:  \:  \:  \:  The  \: remainder \:  when  \: f(x) \:  is \:  divided \:  by \:  x \:  +  \: 2 \:  is \:  f(-2)}}} \\  \\

{\bold{\sf{∴ \:  \:  \:  \:  \:  remainder \:  =  \:  f(-2)}}} \\  \\

{\bold{\rm{⟼ \:  \:  \:  \:  \: 4(-2)³ \:  -  \: 3(-2)²  \: + \:  2(-2) \:  - \:  4}}} \\  \\

{\bold{\rm{⟼ \:  \:  \:  \:  \: -32  \: -  \: 12 \:  - \:  4  \: - \:  4}}} \\  \\

{\bold{⟼ \:  \:  \:  \:  \:  \: }}{\large{\mathrm{\underline{\fbox{\red{f( - 2) \:  =  \: -52}}}}}} \\

Similar questions