find the remaining when p(X) =x^3-6x^2+14x-3 is divided by g(X) =1+2x and verify the result by long division method
Answers
Given :
A car has an constant acceleration of 4 m/s² , starting from rest it reaches the speed of 40 m/s.
To Find :
Distance travelled by the car .
Solution :
\longmapsto\tt{Initial\:Velocity\:(u)=0\:m/s}⟼InitialVelocity(u)=0m/s
\longmapsto\tt{Final\:Velocity\:(v)=40\:m/s}⟼FinalVelocity(v)=40m/s
\longmapsto\tt{Acceleration\:(a)=4\:{m/s}^{2}}⟼Acceleration(a)=4m/s
2
For Time :
Using 1st Equation :
\longmapsto\tt\boxed{v=u+at}⟼
v=u+at
Putting Values :
\longmapsto\tt{40=0+4\:t}⟼40=0+4t
\longmapsto\tt{40=4\:t}⟼40=4t
\longmapsto\tt{\cancel\dfrac{40}{4}=t}⟼
4
40
=t
\longmapsto\tt\bf{10\:sec=t}⟼10sec=t
Now ,
For Distance Travelled :
Using 2nd Equation :
\longmapsto\tt\boxed{s=ut+\dfrac{1}{2}\:{at}^{2}}⟼
s=ut+
2
1
at
2
Putting Values :
\longmapsto\tt{0\times{10}+\dfrac{1}{2}\times{4}\times{(10)}^{2}}⟼0×10+
2
1
×4×(10)
2
\longmapsto\tt{0\times{10}+\dfrac{1}{{\not{2}}}\times{{\not{4}}}\times{100}}⟼0×10+
2
1
×
4×100
\longmapsto\tt{0+2\times{100}}⟼0+2×100
\longmapsto\tt\bf{200\:m}⟼200m
So , The Distance Travelled by the car is 200 m .