Math, asked by pavithradinsym, 6 hours ago

find the remaining when p(X) =x^3-6x^2+14x-3 is divided by g(X) =1+2x and verify the result by long division method​

Answers

Answered by namokar2006
0

Given :

A car has an constant acceleration of 4 m/s² , starting from rest it reaches the speed of 40 m/s.

To Find :

Distance travelled by the car .

Solution :

\longmapsto\tt{Initial\:Velocity\:(u)=0\:m/s}⟼InitialVelocity(u)=0m/s

\longmapsto\tt{Final\:Velocity\:(v)=40\:m/s}⟼FinalVelocity(v)=40m/s

\longmapsto\tt{Acceleration\:(a)=4\:{m/s}^{2}}⟼Acceleration(a)=4m/s

2

For Time :

Using 1st Equation :

\longmapsto\tt\boxed{v=u+at}⟼

v=u+at

Putting Values :

\longmapsto\tt{40=0+4\:t}⟼40=0+4t

\longmapsto\tt{40=4\:t}⟼40=4t

\longmapsto\tt{\cancel\dfrac{40}{4}=t}⟼

4

40

=t

\longmapsto\tt\bf{10\:sec=t}⟼10sec=t

Now ,

For Distance Travelled :

Using 2nd Equation :

\longmapsto\tt\boxed{s=ut+\dfrac{1}{2}\:{at}^{2}}⟼

s=ut+

2

1

at

2

Putting Values :

\longmapsto\tt{0\times{10}+\dfrac{1}{2}\times{4}\times{(10)}^{2}}⟼0×10+

2

1

×4×(10)

2

\longmapsto\tt{0\times{10}+\dfrac{1}{{\not{2}}}\times{{\not{4}}}\times{100}}⟼0×10+

2

1

×

4×100

\longmapsto\tt{0+2\times{100}}⟼0+2×100

\longmapsto\tt\bf{200\:m}⟼200m

So , The Distance Travelled by the car is 200 m .

Similar questions