Physics, asked by manoj65430, 7 months ago

Find the resistance of R1 and R2.​

Attachments:

Answers

Answered by BrainlyTwinklingstar
39

Question :-

In resistor R_1 and R _2where connected in series will give 16Ω and when connected in parallel gives 3Ω. Find the resistance of R_1 and R_2

Given :-

R_1 + R_2 = 16Ω

  \sf\dfrac{1}{R_1} +  \dfrac{1}{ R_2} =  \dfrac{ R_2  \times  R_1}{R_1+ R_2} =3 \Omega

To find:-

The resistance of R_1 and R_2

Solution :-

R_1 + R_2 = 16Ω

 \sf R_2 = 16 - R_2  \:  \:  \:  \:  \:  \:  \:  \: .....(1)

\sf\dfrac{ R_2  \times  R_1}{R_1+ R_2} =3 \Omega

 \sf R_2  \times  R_1 = 3(R_1+ R_2) \:  \:  \:  \: .....(2)

Put eq (1) in eq (2)

 \sf16 -  R_1 \times R_1 = 3(R_1+ 16 - R_1)

 \sf R_1(16 - R_1) = 3( \:  \cancel {R_1}+ 16  \: \cancel{ - R_1})

 \sf16  R_1  -  R_1^{2}  = 48

 \sf  R_1 ^{2}   - 16 R_1   +  48 = 0

 \sf R_1 ^{2}  - 12 R_1 - 4R_1  +  48 = 0

 \sf R_1(R_1 - 12) - 4(R_1 - 12) = 0

 \sf(R_1 - 4)(R_1 - 12) = 0

Hence, \sf R_1= 4 or \sf R_1= 12

Thus if \sf R_1 = 4 then \sf R_2= 12

lf \sf R_1 = 12 then \sf R_2= 4

Similar questions