Math, asked by kartikays639, 1 year ago

Find the right hand derivative and the left hand derivative of \left \begin{array}{ll}  f(x)=  x -1 ,    & \quad  x \  \textless \  2  \\ \hspace{0.75cm}= 2x-3,   & \quad  x \geq 2   \end{array}, at the point x = 2 and hence show that f(x) is not differentiable at x = 2.

Answers

Answered by luciianorenato
0

Answer:

The right hand derivative is 2 and the left hand derivative is 1.

Step-by-step explanation:

right hand derivative:

\lim_{h\to 0^+}\frac{f(2+h)-f(2)}{h} =\lim_{h\to 0^+} \frac{2(2+h)-3-1}{h} = \lim_{h\to 0^+}\frac{2h}{h} = 2

left hand derivative:

\lim_{h\to 0^-}\frac{f(2+h)-f(2)}{h} =\lim_{h\to 0^-} \frac{(2+h)-1-1}{h} = \lim_{h\to 0^+}\frac{h}{h} = 1

Answered by pulakmath007
8

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \sf{f(x) = \begin{cases}   \sf{x} - 1 & \text{x < 2} \\  \sf{2x - 3} &  \sf{x } \geqslant  2\end{cases}}

TO DETERMINE

  • Right hand derivative at x = 2

  • Left hand derivative at x = 2

  • TO show f(x) is not differentiable at x = 2

CALCULATION

Here

 \sf{f(x) = \begin{cases}   \sf{x} - 1 & \text{x < 2} \\  \sf{2x - 3} &  \sf{x } \geqslant  2\end{cases}}

 \sf{So \:  \:  \:  \:  f(2) = 4 - 3 = 1}

Now

Right hand derivative at x = 2

 = \displaystyle  \sf{\lim_{x \to 2 {+}} \:  \frac{f(x)-f(2)}{x-2}}

 = \displaystyle  \sf{\lim_{x \to 2 {+}} \:  \frac{2x - 3-1}{x-2}}

 = \displaystyle  \sf{\lim_{x \to 2 {+}} \:  \frac{2x - 4}{x-2}}

 = \displaystyle  \sf{\lim_{x \to 2 {+}} \:  \frac{2(x - 2)}{x-2}}

 = \displaystyle 2 \:  \:  \:  \sf{\lim_{x \to 2 {+}} \:  \frac{(x - 2)}{x-2}}

 = \displaystyle  \sf{2}

Left hand derivative at x = 2

 = \displaystyle  \sf{\lim_{x \to 2 { - }} \:  \frac{f(x)-f(2)}{x-2}}

 = \displaystyle  \sf{\lim_{x \to 2 { - }} \:  \frac{x - 1 - 1}{x-2}}

 = \displaystyle  \sf{\lim_{x \to 2 { - }} \:  \frac{x - 2}{x-2}}

 = \displaystyle  \sf{1}

Hence Right hand derivative at x = 2 is 2 and

Left hand derivative at x = 2 is 1

Hence at x = 2

Right hand derivative # Left hand derivative

Hence f(x) is not differentiable at x = 2

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

log₁₀(10.01),Find approximate value

https://brainly.in/question/5598224

Similar questions