Math, asked by laxmiduvvarapu666, 7 months ago

find the RMS value of XE^{X} between X=0andx=1​

Answers

Answered by chandini7422
2

hope it helps you...

MARK IT AS BRAINLIESTS ANSWER

Attachments:
Answered by hukam0685
0

RMS value of  \bf f(x) = x{e}^{x}  \\ is \bf \frac{1}{2} \sqrt{e^2-1} \\

Given:

  •  f(x) = x{e}^{x}  \\

To find:

  • Find the RMS value of the given function between x=0 and x=1

Solution:

Formula to be used:

  • \bf MSV =  \frac{1}{b - a} \int _a  ^{b}  {(f(x)})^{2} dx \\ and
  • \bf RMS =  \sqrt{ MSV}  \\
  • Integration by parts: \int UV \: dx =U \int Vdx -  \int \left (\:  \frac{d U}{dx} \int Vdx \right)dx \\

Step 1:

Calculate MSV (Mean square value ) of function.

Here

f(x) =  x{e}^{x}  \\

x = 0 \: and \: x = 1 \\

so,

a = 0 \: and \: b = 1 \\

MSV =  \frac{1}{1 - 0} \int _0  ^{1}  (xe^x)^{2} dx \\

MSV =  \frac{1}{1} \int _0  ^{1} (x^2 {e}^{2x})  dx \\

Solve integration by parts.

\int  {x}^{2} {e}^{2x}  \: dx = {x}^{2}  \int  {e}^{2x} dx -  \int \left (\:  \frac{d  {x}^{2} }{dx} \int  {e}^{2x} dx \right)dx \\

\int  {x}^{2} {e}^{2x}  \: dx =  \frac{ {x}^{2} { {e}^{2x} }  }{2}  -  \int \left (\:  2x \times   \frac{1}{2}   {e}^{2x} \right)dx \\

\int  {x}^{2} {e}^{2x}  \: dx =  \frac{ {x}^{2} { {e}^{2x} }  }{2}  -  \int \:  x   {e}^{2x} dx \\

again apply integration by parts

\int  {x}^{2} {e}^{2x}  \: dx =  \frac{ {x}^{2} { {e}^{2x} }  }{2}  - {x}  \int  {e}^{2x} dx  +  \int \left (\:  \frac{d  {x}}{dx} \int  {e}^{2x} dx \right)dx \\

\int  {x}^{2} {e}^{2x}  \: dx =  \frac{ {x}^{2} { {e}^{2x} }  }{2}  - \frac{ {x} { {e}^{2x} }  }{2} + \frac{  { {e}^{2x} }  }{4}\\

Apply limit

\int_0  ^{1} {x}^{2} {e}^{2x}  \: dx =   \left(\frac{ {x}^{2} { {e}^{2x} }  }{2}  - \frac{ {x} { {e}^{2x} }  }{2} + \frac{  { {e}^{2x} }  }{4} \right) \bigg | _0  ^{1} \\

\int_0  ^{1} {x}^{2} {e}^{2x}  \: dx =   \left(\frac{ {1}^{2} { {e}^{2} }  }{2}  - \frac{ {1.} { {e}^{2} }  }{2} + \frac{  { {e}^{2} }  }{4} - 0  + 0 -  \frac{ {e}^{0} }{4}  \right)  \\

Cancel the common terms with opposite sign.

\int_0  ^{1} {x}^{2} {e}^{2x}  \: dx =   \left( \frac{  { {e}^{2} }  }{4} -  \frac{1}{4}  \right)  \\

\bf MSV =  \frac{  { {e}^{2} -1}  }{4}\\

Thus,

Mean square value of f(x) is \bf \frac{  { {e}^{2} -1}  }{4}  \\

Step 2:

Find the RMS value of the function.

RMS= \sqrt{MSV}   \\

RMS=   \sqrt{\frac{  { {e}^{2} -1}  }{4} }  \\

\bf RMS=  \frac{1}{2} \sqrt{e^2-1} \\

Thus,

RMS value of  \bf f(x) = x{e}^{x}  \\ is \bf\frac{1}{2} \sqrt{e^2-1} \\

Learn more:

1) find the RMS value of √8-4x square between x =0 and x= 2

https://brainly.in/question/44826054

2) what is the peak and average values of 500 volts RMS?

https://brainly.in/question/11685378

#SPJ2

Similar questions