Physics, asked by abhishekkumar53436, 1 day ago

find the RMS value velocity of molecules of hydrogen at 20°c molecular weight of hydrogen is 2 and R = 8.31×10 ki power 3 J/(kilo mole degree)​

Answers

Answered by MystícPhoeníx
37

Answer:

  • 1911.08 m/s is the required answer.

Explanation:

According to the Question

It is given that,

  • Molecular weight of hydrogen,M = 2
  • Gas Constant ,R = 8.31 × 10³
  • Temperature ,T = 20°C

Firstly we convert the unit here ,

Conversion of Unit

→ T = 273 + 20

→ T = 293K

Now, calculating the RMS value of molecules of hydrogen .

 \\  \star{\boxed{\purple{\bf \bold{V_{rms} =    \sqrt{ \frac{3RT}{M}}}}}} \\  \\

On substituting the value we get

 \implies \sf \: V_{rms} \:  =  \sqrt{ \frac{3 \times 8.31 \times 10 {}^{  3} \times 293 }{2} }  \\  \\  \implies \sf \: V_{rms} \:  =  \sqrt{ \frac{3 \times 8.31 \times 10^{3} \times 293}{2} }  \\  \\  \\  \implies \sf \: V_{rms} \:  =  \sqrt{ \frac{7304490}{2 } }    \\  \\  \\  \implies \sf \: V_{rms} \:  =  \sqrt{3652245}  \\  \\  \\  \implies \sf \: V_{rms}  \:  =  1911.08\: ms {}^{ - 1}

  • Hence, the Vrms velocity of the given molecules are 1911.08m/s
Answered by ronitsingh170707
2

 \large{\mathfrak{\red{\underbrace{\overbrace{\purple{\boxed{\blue{★Answer★}}}}}}}}

It is given that,

Molecular weight of hydrogen, M = 2

Gas Constant ,R = 8.31 × 10³

Temperature,T = 20°C

Conversion of Unit:

= T = 273 + 20

= T = 293K

Calculate the RMS value of molecules of hydrogen.

vrms =  \sqrt{\frac{3rt}{m} }

On substituting the value we get

Vrms =

 \sqrt{ \frac{3 \times 8.31 \times 10 {}^{3}  \times 293}{2} }

Vrms =

 \sqrt{ \frac{7304490}{2} }

Vrms=

 \sqrt{ \frac{365225}{} }

Vrms =

1911.08ms {}^{ - 1}

:: So the answer is 1911.08m/s

 \large{\mathfrak{\red{\underbrace{\overbrace{\purple{\boxed{\blue{★1911.08m/s★}}}}}}}}

Similar questions