Math, asked by singhriya16jan, 2 months ago

find the root of each of the following equation if they exist by applying quadratic formula. <br />2x²+6root3x-60​

Answers

Answered by khushimehta819
0

Step-by-step explanation:

2x

2

+6

3

x−60=0

Compare given equation with the general form of quadratic equation, which is ax

2

+bx+c=0

a=2,b=6

3

,c=−60

Find Discriminant:

D=b

2

−4ac

=(6

3

)

2

−4.2.−60

=108+480

=588>0

Roots of equation are real.

Find roots:

x=

2a

−b±

D

=

2×2

−6

3

±

196×3

=

2

−3

3

±7

3

Roots are :

x=2

3

and x=−5

3

Answered by Athul4152
0

2x² + 6√3 - 60 = x² + 3√3 - 30

x² + 3√3 - 60 = 0 ,

  • a = 1

  • b = 3√3

  • c = -60

Applying the quadratic formula ,

  •   \frac{-b±\sqrt{b²-4ac}}{2a} \\

  • \red{\implies}   \frac{-3√3±\sqrt{(3√3)²-4(-60)}}{2} \\

  • \red{\implies}   \frac{-3√3±\sqrt{(27+240)}}{2} \\

  • \red{\implies}   \frac{-3√3±\sqrt{(267)}}{2} \\

Similar questions