Math, asked by somasantra76, 4 months ago

find the root of equation x^2 +5x -6 =0​

Answers

Answered by likhita96
1

Step-by-step explanation:

x^2 + 5x = 6

 \sqrt{x ^{2} + 5x }

x \sqrt{5x}

is the answer......

plsss follow me....

Answered by SuitableBoy
58

{\huge{\underline{\underline{\sf{Question}}}}}

★ Find the roots of the Equation =>

x² + 5x - 6 = 0

{\huge{\underbrace{\rm{Answer\checkmark}}}}

We can find the roots of this Equation using two methods .

First Method :

# Splitting the middle term .

 \mapsto \rm \:  {x}^{2}  + 5x - 6 = 0

 \mapsto \rm \:  {x}^{2}  + 6x - x - 6 = 0

 \mapsto \rm \: x(x + 6) - 1(x + 6) = 0

 \mapsto \rm \: (x - 1)(x + 6) = 0

So ,

Either,

 \rightarrow \rm \: (x - 1) = 0 \\  \implies \boxed{ \rm \:  \: x = 1 \: }

Or,

 \rightarrow \rm \: (x + 6) = 0 \\  \implies \boxed{ \rm \: x =  - 6 \: }

  \star\boxed{ \sf{roots = (1) \: and \:  (- 6)}}

_________________________

Second Method :

# Using Quadratic Formula.

 \boxed{ \rm \:  {x}^{2}  + 5x - 6 = 0}

Here ,

  • a = 1
  • b = 5
  • c = -6

So ,

 \rm \mapsto \: roots \:  =   \dfrac{ - b \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

 \mapsto \rm \: roots \:  =  \dfrac{ - 5 \pm \:  \sqrt{ {(5)}^{2}  - 4 \times 1 \times ( - 6)} }{2 \times 1}

  \mapsto \rm \: roots \:  =  \dfrac{ - 5 \pm \:  \sqrt{25 + 24} }{2}

 \mapsto \rm \: roots \:  =   \dfrac{ - 5 \pm  \sqrt{49}  }{2}

 \mapsto \rm \: roots \:  =  \dfrac{ - 5 \pm \: 7}{2}

So ,

 \rm \: first \: root \:  =  \dfrac{ - 5 + 7}{2}

 \implies \boxed{ \rm \: first \: root \:  =  \frac{ \cancel2}{ \cancel2}  = 1}

and ,

  \rm \: second \: root \:  =  \:  \dfrac{ - 5 - 7}{2}

 \implies \boxed{ \rm \: second \: root \:  =  \frac{  - \cancel{12}}{ \cancel2} =  - 6 }

So ,

 \star \boxed{ \sf \: roots \: are \: (1) \: and \: ( - 6)}

Similar questions