Find the root of equation x³-x-4 = 0, correct to three decimal places using Newton Raphson method.
Answers
Answer:
The root of equation x³-x-4 = 0 to three decimal places using the Newton Raphson Method is 1.797
Step-by-step explanation:
According to the Newton Raphson Method:
where is starting guess.
Starting guess is
Now first iterations,
Now second iterations,
Therefore,
Answer:
1.796
Step-by-step explanation:
Here x3-x-4=0
Let f(x)=x3-x-4
d/dx(x3-x-4)=3x^2-1
∴f′(x)=3x^2-1
Here
x 0 1 2
f(x) -4 -4 2
Here f(1)=-4<0andf(2)=2>0
∴ Root lies between 1 and 2
x0=1+2/2=1.5
x0=1.5
1st iteration :
f(x0)=f(1.5)=1.5^3-1.5-4=-2.125
f′(x0)=f′(1.5)=3⋅1.5^2-1=5.75
x^1=x0-(f(x0)/f′(x0))
x^1=1.5-(-2.125/5.75)
x^1=1.8696
2nd iteration :
f(x1)=f(1.8696)=1.8696^3-1.8696-4=0.6651
f′(x1)=f′(1.8696)=3⋅1.8696^2-1=9.4858
x^2=x1-f(x1)/f′(x1)
x^2=1.8696-(0.6651/9.4858)
x^2=1.7995
3rd iteration :
f(x^2)=f(1.7995)=1.7995^3-1.7995-4=0.0272
f′(x^2)=f′(1.7995)=3⋅1.7995^2-1=8.7141
x^3=x^2-(f(x2)/f′(x2))
x^3=1.7995-(0.0272/8.7141)
x^3=1.7963
4th iteration :
f(x^3)=f(1.7963)=1.7963^3-1.7963-4=0.0001
f′(x^3)=f′(1.7963)=3⋅1.7963^2-1=8.6804
x^4=x3-(f(x3)/f′(x3))
x^4=1.7963-(0.0001/8.6804)
x^4=1.7963
Approximate root of the equation x3-x-4=0 using Newton Raphson mehtod is 1.7963 (After 4 iterations)