Math, asked by ARTHEBEAST, 1 month ago

find the root of quadratic equation 5x^2+2x+7=0 by completing square method​

Answers

Answered by 12thpáìn
5

{             \sf {  x   }  =     -  \dfrac{1}{5}  + \dfrac{ \: \sqrt{ 34   }}{5}   \:  \:  \:  \:  \: or \:  \:  \:  \:   -  \dfrac{1}{5}   -  \dfrac{ \: \sqrt{ 34   }}{5}}\\\\

Step By Step Explanation

  • By Completing Square Method

           \implies       \sf 5x^2+2x+7=0

{           \implies       \sf x^2+ \dfrac{2x}{5} + \dfrac{7}{5} =0 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: Dividing \:  Throughout \:  By  \:  \: 5 }

{           \implies       \sf x^2+ \dfrac{2}{5}x  =  -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Shifting  \: constant \:  term  \: on \:  RHS}

{           \implies       \sf x^2+2 \bigg( \dfrac{2}{10}  \bigg) x +  {\bigg( \dfrac{2}{10}  \bigg)}^{2} =  {\bigg( \dfrac{2}{10}  \bigg)}^{2} -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: Adding \bigg(\dfrac{1}{2} Coefficient  \: of \:  x\bigg)^2 \: on \: both\: side's }

{           \implies       \sf {  \bigg(x +  \dfrac{2}{10} \bigg) }^{2}  =   \dfrac{4}{100}  -  \dfrac{7}{5}  }

{           \implies       \sf {  \bigg(x +  \dfrac{2}{10} \bigg) }^{2}  =   \dfrac{4 - 140}{100}   }

{           \implies       \sf {  \bigg(x +  \dfrac{2}{10} \bigg) }  =    \sqrt{\dfrac{136}{100}   } }

{           \implies       \sf {  \bigg(x +  \dfrac{2}{10} \bigg) }  =    \sqrt{\dfrac{ {2}^{2} \times 2 \times 17 }{ {10}^{2} }   } }

{           \implies       \sf {  x +  \dfrac{1}{5} }  =     \dfrac{\pm \: 2\sqrt{ 34   }}{10}  }

{           \implies        \sf {  x   }  =     \dfrac{\pm \: \sqrt{ 34   }}{5} -  \dfrac{1}{5}   }

{           \implies       \sf {  x   }  =     -  \dfrac{1}{5}  + \dfrac{ \: \sqrt{ 34   }}{5}   \:  \:  \:  \:  \: or \:  \:  \:  \:   -  \dfrac{1}{5}   -  \dfrac{ \: \sqrt{ 34   }}{5}}

Answered by TheBrainlyKing1
2

\sf 5x^2+2x+</strong>7=0

\sf 5x^2+2x+7=0{\sf x^2+ \dfrac{2x}{5} + \dfrac{7}{5} =0 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: Dividing \:  Throughout<strong> \:  By  \:  \: 5

\sf 5x^2+2x+7=0{\sf x^2+ \dfrac{2x}{5} + \dfrac{7}{5} =0 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: Dividing \:  Throughout \:  By  \:  \: 5 }{\sf x^2+ \dfrac{2}{5}x  =  -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Shifting  \: constant \:  term  \: </strong><strong> \:  </strong><strong>R</strong></p><p><strong>[tex]\sf 5x^2+2x+7=0{\sf x^2+ \dfrac{}{5} + \dfrac{7}{5} =0 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: Dividing \:  Throughout \:  By  \:  \: 5 }{\sf x^2+ \dfrac{2}{5}x  =  -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Shifting  \: constant \:  term  \: on \:  RHS}{\sf x^2+2 \bigg( \dfrac{2}{10}  \bigg) x +  {\bigg( \dfrac{2}{10}  \bigg)}^{2} =  {\bigg( \dfrac{2}{10}  \bigg)}^{2} -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: Adding \bigg(\dfrac{1}{2} Coefficient  \: of \:  x\bigg)^2 \: on \: both\: side's }

\sf 5x^2+2x+7=0{\sf x^2+ \dfrac{2x}{5} + \dfrac{7}{5} =0 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: Dividing \:  Throughout \:  By  \:  \: 5 }{\sf x^2+ \dfrac{2}{5}x   -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \:  \: Shifting  \: constant \:  term  \: on \:  RHS}{\sf x^2+2 \bigg( \dfrac{2}{10}  \bigg) x +  {\bigg( \dfrac{2}{10}  \bigg)}^{2} =  {\bigg( \dfrac{2}{10}  \bigg)}^{2} -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: Adding \bigg(\dfrac{1}{2} Coefficient  \: of \:  x\bigg)^2 \: on \: both\: side's }{\sf {  \bigg(x +  \dfrac{2}{10} \bigg) }^{2}  =   \dfrac{4}{100}  -  \dfrac{7}{5}  }

\sf 5x^2+2x+7=0{\sf x^2+ \dfrac{2x}{5} + \dfrac{7}{5} =0 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: Dividing \:  Throughout \:  By  \:  \: 5 }{\sf x^2+ \dfrac{2}{5}x  =  -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Shifting  \: constant \:  term  \: on \:  RHS}{\sf x^2+2 \bigg( \dfrac{2}{10}  \bigg) x +  {\bigg( \dfrac{2}{10}  \bigg)}^{2} =  {\( \dfrac{2}{10}  \bigg)}^{2} -  \dfrac{7}{5}  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: Adding \bigg(\dfrac{1}{2} Coefficient  \: of \:  x\bigg)^2 \: on \: both\: side's }{\sf {  \bigg(x +  \dfrac{2}{10} \bigg) }^{2}  =   \dfrac{4}{100}  -  \dfrac{7}{5}  }{\sf {  \bigg(x +  \dfrac{2}{10} \bigg) }^{2}  =   \dfrac{4 - 140}{100}   }

\sf 5x^2+2x+7=0{\sf x^2+ \dfrac{2x}{5} + \dfrac{7}{5} =0 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: Dividing \:  Throughout \:  By  \:  \: 5 }{\sf x^2+ \dfrac{2}{5}x  =  -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Shifting  \: constant \:  term  \: on \:  RHS}{\sf x^2+2 \bigg( \dfrac{2}{10}  \bigg) x +  {\bigg( \dfrac{2}{10}  \bigg)}^{2} =  {\bigg( \dfrac{2}{10}  \bigg)}^{2} -  \dfrac{7}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: Adding \bigg(\dfrac{1}{2} Coefficient  \: of \:  x\bigg)^2 \: on \: both\: side's }{\sf {  \bigg(x +  \dfrac{2}{10} \bigg) }^{2}  =   \dfrac{4}{100}  -  \dfrac{7}{5}  }{\sf {  \bigg(x +  \dfrac{2}{10} \bigg) }^{2}  =   \</strong></p><p>}}

Similar questions