Math, asked by sehar8737, 1 year ago

Find the root of the equation 5x square-6x-2=0 by the method of compleing of the square

Answers

Answered by chopraneetu
7

5 {x}^{2}  - 6x - 2 = 0 \\ divide \: the \: equation \: by \: 5 \: we \: get \\  {x}^{2}  -  \frac{6}{5} x -  \frac{2}{5}  = 0 \\  {x}^{2}  -  \frac{6}{5} x +  {( \frac{6}{10}) }^{2}  -  { (\frac{6}{10}) }^{2}  -  \frac{2}{5}  = 0 \\  {(x -  \frac{6}{10}) }^{2}  =  { (\frac{6}{10}) }^{2}  +  \frac{2}{5}  \\  {(x -  \frac{3}{5}) }^{2}  =  \frac{9}{25}  +  \frac{2}{5}   =  \frac{9 + 10}{25}  =  \frac{19}{25} \\ {(x -  \frac{3}{5}) }^{2}  =  { \frac{19}{25} }  \\ x -  \frac{3}{5}  =  \frac{ + }{ - }  \sqrt{ \frac{19}{25} }  \\ x =  \frac{3}{5}  + \sqrt{ \frac{19}{25} }  \:  \: or \:  \:  \frac{3}{5}  -  \sqrt{ \frac{19}{25} }  \\ x =  \frac{3 +  \sqrt{19} }{5}  \:  \: or \:  \:  \frac{3 -  \sqrt{19} }{5}
Similar questions