Math, asked by Anonymous, 9 months ago

find the root of the following quadratic equation by factorization method √2x²+7x +5√2​

Answers

Answered by Vamprixussa
6

Given equation

\sqrt2} x^{2} +7x+5\sqrt{2}=0

Solving, we get,

\sqrt{2} x^{2} +7x+5\sqrt{2} =0

\implies \sqrt{2} x^{2} +2x+5x+5\sqrt{2}  = 0

\implies \sqrt{2} x(x+\sqrt{2})+5(x+\sqrt{2}) = 0

\implies (\sqrt{2} x+5)(x+\sqrt{2}) = 0

Now,

\sqrt{2} x+5=0

\implies \boxed{\boxed{\bold{ x = \dfrac{-5}{\sqrt{2} } }}}}

x+\sqrt{2} =0

\implies \boxed{\boxed{\bold{ x = -\sqrt{2} }}}}}}

                                                       

Answered by Anonymous
60

\rule{200}3

\bigstar\Huge{\green{\underline{\textsf{Question}}}}

find the root of the following quadratic equation by factorization method \sf \sqrt{2}x^2 + 7x + 5 \sqrt {2}

\rule{200}3

\bigstar\Huge{\red{\underline{\textsf{Answer}}}}

\longrightarrow \sf \sqrt{2}x^2 + 7x + 5 \sqrt {2} = 0

\longrightarrow \sf \sqrt{2}x^2 + 5x + 2x + 5 \sqrt {2} = 0

\longrightarrow \sf x {(\sqrt{2}x+5)} + \sqrt {2} ( \sqrt {2}x + 5) = 0

\longrightarrow \sf x {(\sqrt{2}x+5)}(x + \sqrt{2}) = 0

\longrightarrow \sf x + \sqrt 2 = 0

\orange\longrightarrow \boxed{ \sf\orange{ x = - \sqrt{2}}}

\longrightarrow \sf \sqrt {2}x + 5 = 0

\purple\longrightarrow \boxed{\sf\purple {x = {\frac{-5}{\sqrt{2}}}}}

\rule{200}3

❤️ \mathcal{BE \: BRAINLY} ❤️

\rule{200}3

Similar questions