Math, asked by nitu64322, 11 months ago

Find the root of the following quadratic equations if they exist by the method of completing square.

(i) 2x^2 + x + 4 = 0​

Answers

Answered by Anonymous
6

\huge\underline\mathbb{SOLUTION:-}

\mathsf \red {(i)\:2x^2 + x + 4 = 0}

\mathsf {Dividing\:equation\:by\:2.}

\mathsf {x^2 + \frac{x}{2} + 2 = 0}

\mathsf {Following\:the\:procedure\:of\:completing\:square,}

\implies \mathsf {x^2 + \frac{x}{2} + 2 + \bigg(\frac{1}{2}\bigg)^2 - \bigg(\frac{1}{4}\bigg)^2 = 0}

\implies \mathsf {x^2 + \bigg(\frac{1}{4}\bigg)^2 + \frac{x}{2} + 2 - \bigg(\frac{1}{4}\bigg)^2 = 0}

  • [(a + b)² = a² + b² + 2ab]

\implies \mathsf {\bigg(x + \frac{1}{4}\bigg)^2 + 2 - \frac{1}{16} = 0}

\implies \mathsf {\bigg(x + \frac{1}{4}\bigg)^2 = \frac{1}{16} - 2 = \frac{1 - 32}{16} }

\mathsf {Taking\:square\:root\:on\:both\:sides.}

  • Right hand side does not exist because square root of negative number does not exist.

\therefore \mathsf \blue {There\:is\:no\:solution\:for\:quadratic\:equation\:2x^2 + x + 4 = 0}

Answered by rakesh4114
3

Given Quadratic equation ;

2x^2 + x +4 = 0

2x^2 +x = -4

divide 2 on both sides, we get

2x^2/2 + x/2 = -4/2

so ,we get

x^2 + x/2 = -2

Add [1/4]^2 on both sides, we get

x^2 + x/2 +[1/4]^2 =-2 +[1/4]^2

[x+1/4]^2 = -2 +1/16

=-32+1/16

= -33/16

x+1/4 =-33/16 =-33/4

x= -1/4 - -33/4,-1/4+-33/4

X = 1+33/4,1-33/4

  • If the answer is correct and if you like it, then .......
  • Mark it as a brainliest answer and thank me........

Similar questions