Math, asked by Kunal5756667, 3 months ago

Find the root of the given question:-

\colon\implies{\sf{ 2x^2 + 3x - 90 = 0 }} \\

Answers

Answered by TokyoLights
6

Answer:

Hii,

Step-by-step explanation:

Hope the attachment will help you..

# XxLovingBoyxX ❤️

Attachments:
Answered by Anonymous
105

Given equation :-

\colon\implies{\sf{ 2x^2 + 3x - 90 = 0 }} \\

  • We have to find the Discriminant of this equation by using the formula:-

:\implies\underline\purple{\boxed{\sf D = b²-4ac}}\\

\implies\sf D  = ( 3) ^{2}  - 4(2)( -90) \\  \\ \implies\sf D  = 9 + 720 =729

  • Since, D>0 hence, this equation will have distinct and real roots.

Formula to be applied now is as follows:-

\implies\underline\pink{\boxed{\sf x = \dfrac{-b±√D}{2a}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

 \\ \colon\implies{\underline{\boxed{\sf{ x = \dfrac{ -b \pm \sqrt{ b^2 - 4ac} }{2a} }}}} \\ \\ \\ \colon\implies{\sf{ x = \dfrac{ -3 \pm \sqrt{ 3^2 - 4 \times 2 \times (-90)} }{2 \times 2} }} \\ \\ \\ \colon\implies{\sf{ x = \dfrac{ -3 \pm \sqrt{ 9 +720} }{4} }} \\ \\ \\ \colon\implies{\sf{ x = \dfrac{ -3 \pm \sqrt{ 729} }{4} }} \\ \\ \\ \colon\implies{\sf{ x = \dfrac{ -3 \pm 27 }{4} }} \\ \\ \\ \colon\implies{\sf{ x = \dfrac{ -3 + 27 }{4} \ and \ \dfrac{-3-27}{4} }} \\ \\ \\ \colon\implies{\sf{ x = \dfrac{ 24 }{4} \ and \ \dfrac{-30}{4} }} \\ \\ \\ \colon\implies{\underline{\boxed{\sf\red{ x = 6 \ and \ -7.5 }}}} \\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Similar questions