Math, asked by Enrique001, 3 months ago

Find the Root of the Quadratic Equation
2x \div (x - 4) + (2x - 5) \div (x - 3)
=
25 \div 3
Pleaseeee answer fast.

Answers

Answered by ItzBrainlyBeast
23

\LARGE\textsf{\underline\textcolor{aqua}{↭ SoLuTioN :-}}

\large\textsf{                                                               }

 ↦\frac{2x}{x - 4}  +  \frac{2x - 5}{x - 3}  =  \frac{25}{3} \\  \\  \\ ↦ \frac{2x(x - 3) + (x - 4)(2x - 5 )}{(x - 4)(x - 3)}   =  \frac{25}{3}  \\  \\  \\ ↦ \frac{2 {x}^{2} - 6x + 2 {x}^{2}   - 8x + 20 - 5x}{ {x}^{2}  - 3x - 4x + 12}  =  \frac{25}{3}  \\  \\  \\  ↦\frac{4 {x}^{2}  - 19x + 20}{ {x}^{2} - 7x + 12 }  =  \frac{25}{3}  \\  \\  \\ ↦3( 4{x}^{2}  - 19x + 20) = 25( {x}^{2}  - 7x + 12) \\  \\  \\ ↦12 {x}^{2}  - 57x + 60 = 25 {x}^{2}  - 175x + 300 \\  \\  \\ ↦12 {x}^{2}  - 25 {x}^{2}  - 57x  + 175x + 60 - 300 = 0\\  \\  \\ ↦ - 13 {x}^{2}  + 118x - 240 = 0\\\\\\↦ - 13{x}^{2} + 40x + 78x - 240 = 0\\\\\\↦x ( - 13x + 40) - 6 (- 13x + 40 ) = 0\\\\\\↦( x - 6 )( -13x + 40 ) = 0

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{x = 6}}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{x =$\cfrac{\large\textsf{40}}{\large\textsf{13}}$}}

Similar questions