Math, asked by orvin19, 8 months ago

find the root of x^2-22+121=0 by factorisation method​

Answers

Answered by vr677447
1

Answer:

(x+11)  •  (x+11)

x = -11

Step-by-step explanation:

equation we have = x^{2}-22+121 = 0

The first term is,  x2  its coefficient is  1 .

The middle term is,  +22x  its coefficient is  22 .

The last term, "the constant", is  +121  

Step-1 : Multiply the coefficient of the first term by the constant   1 • 121 = 121  

Step-2 : Find two factors of  121  whose sum equals the coefficient of the middle term, which is   22 .

     -121    +    -1    =    -122  

     -11    +    -11    =    -22  

     -1    +    -121    =    -122  

     1    +    121    =    122  

     11    +    11    =    22    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  11  and  11  

                    x2 + 11x + 11x + 121

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x+11)

             Add up the last 2 terms, pulling out common factors :

                   11 • (x+11)

Step-5 : Add up the four terms of step 4 :

                   (x+11)  •  (x+11)

            Which is the desired factorization

hope this answer help you

pls mark my answer brainlliest

Similar questions