Math, asked by tenzin1704, 9 months ago

find the root.
x =  (- b + -  \sqrt{ {b}^{2} } - 4ac \\ \: )  \div 2a

Attachments:

Answers

Answered by zahaansajid
0

x =  \frac{ - b \frac{ + }{} \sqrt{ {b}^{2} - 4ac }  }{2a}  \\ x =  \frac{ -  ( - 60)  \frac{ + }{} \sqrt{ {60}^{2} - 4 \times 36 \times 23 } }{2 \times 36}  \\ x =  \frac{60 \frac{ + }{}  \sqrt{3600 - 3312} }{120}   \\ x =  \frac{60 \frac{ + }{} \sqrt{288}  }{120}  \\

Hope this is helpful to you

Pls mark as brainliest

Follow me and I'll follow you back

Answered by kapilsir19
1

Answer:

please Mark as a brainlist you

Step-by-step explanation:

36 {x}^{2}  + 23 = 60x \\ 36 {x}^{2} - 60x + 23 = 0 \\ a {x}^{2} + bx + c = 0 \\ a = 36 \\ b = -  60 \\ c = 23   \\ x =  \frac{ - b +  -  \sqrt{ {b}^{2} - 4ac }  }{2a}  \\   \:  \:  \: =  \frac{ - ( - 60) +  -  \sqrt{ { - 60}^{2} - 4 \times 36 \times 23 } }{2 \times 36}  \\   \:  \:  \: = \frac{60 +  -  \sqrt{3600 - 3312} }{72}  \\   \:  \:  \: =  \frac{60 +  - 12 \sqrt{2} }{72}  \\  =  \frac{12(5 +  -  \sqrt{2} )}{72}  \\  =  \frac{5 +  -  \sqrt{2} }{6}  \\ then \\  \alpha  =  \frac{5 +  \sqrt{2} }{6} ansssssss \\  \beta  =  \frac{5 -  \sqrt{2} }{6} ansssssss

Similar questions