Math, asked by bhavnamaliwal1234, 9 months ago

find the roots 1/x+1+1/x+2=4/x+4
x≠1,-2&-4​

Answers

Answered by muskan610
4

Step-by-step explanation:

 \frac{1}{x + 1}   +  \frac{1}{x + 2}  =  \frac{4}{x + 4}

 \frac{(x + 2) + (x + 1)}{(x + 1)(x + 2)}  =  \frac{4}{x + 4}

 \frac{2x + 3}{ {x}^{2}  + 3x + 2}  =  \frac{4}{x + 4}

(x+4)(2x+3) = 4(x²+3x+2)

2x²+3x+8x+12 = 4x²+12x+8

2x²+11x+12 = 4x²+12x+8

2x²+x-4 =0

by quadratic formula

Attachments:
Answered by Sharad001
69

Question :-

Find the roots of :

 \to \tt \frac{1}{x + 1}  +  \frac{1}{x + 2}  =  \frac{4}{x + 4}  \\ \\  \tt (x  ≠  - 1,-2   \: and  \: -4 )

Answer :-

\tt \to  \boxed{ \tt x =  \frac{ - 1 \pm \sqrt{33} }{4} } \:

Used formula :-

If any Quadratic polynomial is given as

→ f(x) = ax² + bx + c = 0

So ,shri dharacharya principle is -

 \to  \boxed{\tt \: x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }

Solution :-

We have ,

 \to \tt \frac{1}{x + 1}  +  \frac{1}{x + 2}  =  \frac{4}{x + 4} \:  \\  \\ \sf  taking \: lcm \\  \\  \to  \tt \frac{(x + 2) + (x + 1)}{(x + 1) (x + 2)}  =  \frac{4}{x + 4}  \\  \\  \to \tt \:   \frac{2x + 3}{(x + 1)(x + 2)}  =  \frac{4}{x + 4}  \\  \\ \sf  cross \: multiply \:  \\  \\  \to  \tt (2x + 3)(x + 4) = 4(x + 1)(x + 2) \\  \\  \to \tt \: 2 {x}^{2}  + 8x + 3x + 12 \\  \:  \:  \:  \:  \:  \:  \tt = 4( {x}^{2}  + 2x + x + 2) \\  \\  \to \tt \: 2 {x}^{2}  + 11x + 12 = 4 {x}^{2}  + 12x + 8 \\  \\  \sf \: seprate \: all \: of \: these \:  \\  \\  \to \tt 2 {x}^{2}  + x - 4 = 0 \\  \\ \sf apply \: shri \: dharacharya \: principle

 \to \tt x =  \frac{ - 1 \pm \sqrt{ {1}^{2}  - 4 \times 2 \times ( - 4)} }{2 \times 2}  \\   \\  \tt \to \: x =  \frac{ - 1 \pm \sqrt{1 + 32} }{4}  \\  \\  \tt \to  \boxed{ \tt x =  \frac{ - 1 \pm \sqrt{33} }{4} }

Similar questions