Math, asked by atharvagrawal00839, 10 months ago



Find the roots: 4√3 x2

+5x -2√3 = 0 ​

Answers

Answered by Anonymous
9

\huge\underline\frak\purple{Solution}

\sf 4\sqrt{3}\;x^2+5x-2\sqrt{3}=0

\sf 4\sqrt{3}\;x^2+8x-3x-2\sqrt{3}=0

\sf 4x(\sqrt{3}\;x+2)-\sqrt{3}(\sqrt{3}\;x+2)=0

\sf (4x-\sqrt{3}\;)\;(\sqrt{3}\;x+2)=0

Either

x= 3/4

or

x= -2/3

Answered by CharmingPrince
26

{\bold {\huge {\underline {\mathfrak {\green{Answer}}}}}}

_________________________

\boxed{\red{\bold{Given:}}}

4\sqrt{3} {x}^{2} + 5x - 2\sqrt {3} = 0

\boxed{\red{\bold{Solution:}}}

{\blue {\underline {Simply\: using \:Radical \:expression}}}

4\sqrt{3}x^2+ 5x - 2\sqrt {3} = 0

4 \sqrt{3}x^2 + 8x -3x - 2 \sqrt{3} = 0

{\blue {\underline {Solve\: equation \:for \:x}}}

4x(\sqrt{3}x + 2) - \sqrt{3}(\sqrt{3}x + 2)

(\sqrt{3}x+2)(4x-\sqrt{3}) = 0

{\blue {\underline {Find\: the \:values }}}

x = \displaystyle{\frac{-2}{\sqrt {3}}}

x =\displaystyle{\frac{\sqrt {3}}{4}}

_________________________

Similar questions