Math, asked by deepak9914, 11 months ago

Find the roots 9x^2+14x-8=0 competing the square method​

Answers

Answered by Anonymous
82

\huge{\underline{\underline{\green{\mathfrak{Answer:}}}}}

P(x) = 9x² + 14x - 8

By completing the square method:

\mathsf {x^2 + \frac{14}{9}x - \frac{8}{9} = 0 }

\mathsf {(x + \frac{14}{18})^2 - (\frac{14}{18})^2 - \frac{8}{9} = 0}

\mathsf {(x + \frac{14}{18})^2 - (\frac{14}{18})^2 - \frac{8}{9} = 0}

\mathsf {(x + \frac{14}{18})^2 - \frac{196}{324} - \frac{8}{9} = 0}

\mathsf {(x + \frac{14}{18})^2 - (\frac{196 + 288}{324}) = 0}

\mathsf {(x + \frac{14}{18})^2 - \frac{484}{324} = 0}

\mathsf {(x + \frac{14}{18})^2 = \frac{484}{324}}

\mathsf {x + \frac{14}{18} = ± \sqrt{\frac{484}{324}}}

\mathsf {x + \frac{14}{18} = ± \frac{22}{18}}

\mathsf {x  =  \frac{-14}{18} ± \frac{22}{18}}

\mathsf {x  =  \frac{-14}{18} + \frac{22}{18} \:\:\:\:\:\:OR\:\:\:\:\frac{-14}{18} - \frac{22}{18}}

\mathsf {x  =  \frac{8}{18} \:\:\:\:\:\:OR\:\:\:\:\:  \frac{-36}{18}}

\fbox{\mathsf {x  = \frac{4}{9}  \:\:\:\:\:\:OR\:\:\:\:\: x = -2}}

Answered by palvindermanes
67

Answer:

This is the written answer for your question.

Attachments:
Similar questions