Math, asked by soham4000li, 1 month ago

Find the roots by completing the square 2x2 -7x+3=0​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given quadratic equation is

 \red{\rm :\longmapsto\: {2x}^{2} - 7x + 3 = 0 \:  \: }

can be rewritten as

 \red{\rm :\longmapsto\: {2x}^{2} - 7x =  -  \: 3 \:  \: }

On dividing each term by 2, we get

 \purple{\rm :\longmapsto\: {x}^{2} - \dfrac{7}{2}x  = -  \:  \dfrac{3}{2} \:  \: }

can be rewritten as

 \purple{\rm :\longmapsto\: {x}^{2} -2 \times  \dfrac{7}{4}x  = -  \:  \dfrac{3}{2} \:  \: }

Adding the square of half the coefficient of x, i.e (7/4)^2 on both sides, we get

 \purple{\rm :\longmapsto\: {x}^{2} -2 \times  \dfrac{7}{4}x  +  {\bigg[\dfrac{7}{4} \bigg]}^{2} = -  \:  \dfrac{3}{2} +  {\bigg[\dfrac{7}{4} \bigg]}^{2}  \:  \: }

We know,

 \red{\boxed{ \rm{ \: {x}^{2} +  {y}^{2} - 2xy ={(x - y)}^{2} \:  \: }}}

So, using this identity, we get

 \purple{\rm :\longmapsto\:  {\bigg[x - \dfrac{7}{4} \bigg]}^{2} = -  \:  \dfrac{3}{2} +  \dfrac{49}{16}   \:  \: }

 \purple{\rm :\longmapsto\:  {\bigg[x - \dfrac{7}{4} \bigg]}^{2} = \dfrac{ - 24 + 49}{16}   \:  \: }

 \purple{\rm :\longmapsto\:  {\bigg[x - \dfrac{7}{4} \bigg]}^{2} = \dfrac{25}{16}   \:  \: }

 \green{\rm :\longmapsto\:x - \dfrac{7}{4}  =  \:  \pm \: \dfrac{5}{4} \:  \: }

 \green{\rm :\longmapsto\:x  =  \dfrac{7}{4} \:  \:  \pm \: \dfrac{5}{4} \:  \: }

 \green{\rm :\longmapsto\:x  =  \dfrac{7 \:  \pm \: 5}{4}}

 \green{\rm :\longmapsto\:x  =  \dfrac{7 \: +  \: 5}{4} \:  \:  \: or \:  \:  \: \dfrac{7 \:  -  \: 5}{4} }

 \green{\rm :\longmapsto\:x  =  \dfrac{12}{4} \:  \:  \: or \:  \:  \: \dfrac{2}{4} }

\bf\implies \:x = 3 \:  \:  \: or \:  \:  \: x \:  =  \:  \dfrac{1}{2}

Additional Information:-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions