Math, asked by ns3657497, 2 months ago

find the roots(class X) :-
 \frac{m}{n} {x}^{2}   +  \frac{n}{m}  = 1 - 2x

Answers

Answered by rishu6845
0

Step-by-step explanation:

 \dfrac{m}{n}  {x}^{2}  +  \dfrac{n}{m}  = 1 - 2x \\ multiplying \: whole \: equation \: by \:  \dfrac{n}{m}  \\  {x}^{2}  +   \dfrac{ {n}^{2} }{ {m}^{2} }  =  \dfrac{n}{m}  - 2 \dfrac{n}{m} x \\  {x}^{2}  + 2 \dfrac{n}{m} x +  \dfrac{ {n}^{2} }{ {m}^{2} }  =  \dfrac{n}{m}  \\  {(x +  \dfrac{n}{m} )}^{2}  =  {(\sqrt{ \frac{n}{m} }  \:  )}^{2}  \\ if \\ x +  \dfrac{n}{m}  =  \sqrt{ \frac{n}{m} }  \\ x =  \sqrt{ \dfrac{n}{m} }  -  \dfrac{n}{m}  \\ if \\ x +  \dfrac{n}{m}  =  \sqrt{ \dfrac{n}{m} }  \\ x =  \sqrt{ \dfrac{n}{m}  }  -  \dfrac{n}{m}

Similar questions