Math, asked by YashviAgarwal, 11 months ago

Find the roots (if they exist) of the following
quadratic equations by the method of
completing the square : 4x^2 + x + 15

Answers

Answered by luckypriya077
0

4 {x}^{2}  + x + 15  = 0 \\  \\ divide \: by \: 4 \\  \\  {x}^{2}  +  \frac{x}{4}  =  \frac{ - 15}{4}  \\  \\ add \: ( \frac{1}{8})^{2}  \: on \: both \: sides \\  \\  {x}^{2}  +  \frac{x}{4}  + ( \frac{1}{8} )^{2}  =  \frac{ - 15}{4}  + ( \frac{1}{8} ) ^{2}  \\  \\ (x +  \frac{1}{8} ) ^{2}  =  \frac{ - 15}{4}  +  \frac{1}{64}  \\  \\ (x +  \frac{1}{8} ) ^{2}  =  \frac{ - 240 + 1}{64}  \\  \\ x +  \frac{1}{8}   =  \sqrt{ \frac{ - 239}{64} }  \\  \\ x =  \sqrt{ - 239}   \div 8 -  \frac{1}{8}  \\  \\ x =    \frac{ -  \sqrt{239 - 1} }{8}  \\  \\ or \\  \\ x =   \frac{ \sqrt{239} }{8}

Similar questions