Find the roots (if they exist) of the following quadratic equations by the method of completing the square:
x^2–2 √5 x+1 = 0
Answers
Step-by-step explanation:
x^2 - 2✓5 x + 1 =0
✓D = ✓ 20 - 4
= ✓16
= 4
alpha = (-(-2✓5) + 4 ) / (2*1)
= (2✓5 + 4)/2
= 2 + ✓5
beta = (-(-2✓5) - 4 ) / (2*1)
= (2✓5 - 4)/2
= ✓5 - 2
Answer
a). 2x2−7x+3=0
⇒x2−27x=−23
Adding (47)2 on both sides
⇒x2−27x+(47)2=2−3+(47)2
⇒(x−47)2=2−3+1649
⇒(x−47)2=1625
⇒(x−47)2=(45)2
Taking square root on both sides
⇒(x−47)=±45
⇒x−47=45, x−47=4−5
x=45+47 x=4−5+47
x=3 x=21
b). 2x2+x−4=0
x2+2x=2
Adding (41)2 on both sides
⇒x2+2x+(41)2=2+(41)2
(x+41)2=2+161
(x+41)2=1633
Taking square root on both sides
⇒x+41=±433
⇒x=±433−41, x=4−33−41
⇒x=±433−1, x=4−33−1
c). 4x2+432+3=0
⇒x2+3x+43=0
x2+3x=4−3
Adding (23)62 on both sides
⇒x2+3x+(23)2=4−3+(23)2
⇒(x+
⇒(x+23)2=0
x=2−3,2−3
same roots.
d). 2x2+x+4=0
⇒x2+2x+2=0
x2+2x=−2
Adding (41)2 on both sides
⇒x2+2x+(41)2=−2+(41)62
⇒(x+41)2=−2+161
⇒(x+41)2=−16−31
Hence, solved.